BackgroundBased on the images generated from two multi-slice computed tomography (CT) scanners, we intended to compare the five-line sign of normal interlobular fissures produced on axial or oblique maximum intensity projection (MIP) reconstructions using different algorithms.MethodsTwo groups of 50 subjects underwent either 16-slice or 256-slice spiral unenhanced chest CT. None of them in either group displayed any abnormality. For each case, maximum intensity projection (MIP) data were used to calculate the axial or oblique projection using four algorithms: standard axial, standard oblique, high-resolution axial, and high-resolution oblique algorithm. The results were then used to reconstruct images of six locations of the lung. The clarity of the five-line sign of the reconstructed MIPs for the interlobular fissures was determined and graded as 1 (unclear), 2 (barely clear), or 3 (clear). Comparisons of the rate and the degree of clarity were performed using non-parametric tests.ResultsData from both the 16-slice and 256-slice CT revealed that the standard oblique algorithm was the best among the four methods for presenting clear images of the five-line sign (p < 0.001), whereas the high-resolution axial algorithm was the worst. In addition, the two CT units exhibited no significant differences in the clarity of the five-line sign (p = 0.273).ConclusionsThe standard oblique algorithm was the best approach to reveal the five-line sign of normal lung fissures. Both 16-slice and 256-slice CT were effective for reconstructing the sign.