Accurate prognosis of outcome events, such as clinical procedures or disease diagnosis, is central in medicine. The emergence of longitudinal clinical data, like the Electronic Health Records (EHR), represents an opportunity to develop automated methods for predicting patient outcomes. However, these data are highly dimensional and very sparse, complicating the application of predictive modeling techniques. Further, their temporal nature is not fully exploited by current methods, and temporal abstraction was recently used which results with symbolic time intervals represetnation. We present Maitreya, a framework for the prediction of outcome events that leverages these symbolic time intervals. Using Maitreya, learn predictive models based on the temporal patterns in the clinical records that are prognostic markers and use these markers to train predictive models for eight clinical procedures. In order to decrease the number of patterns that are used as features we propose the use of three one class feature selection methdos. We evaluate the performance of Maitreya under several parameter settings, including the one-class feature selection, and compare our results to that of atemporal approaches. In general, we found that the use of temporal patterns outperformed the atemporal methods, when representing the number of patterns occurrences.