FOXC2 is a winged helix gene that has been shown to counteract obesity, hypertriglyceridemia, and diet-induced insulin resistance in rodents. Therefore, FOXC2 was analyzed as a candidate gene for susceptibility to type 2 diabetes in Pima Indians. Four variants were identified by sequencing the coding region, as well as 638 bp of the 5 region and 300 bp of the 3 region of the gene. Two single nucleotide polymorphisms (SNPs) were found in the putative promoter region, a C-512T transition and a G-350T. In addition, two SNPs were found in the 3 region, a C1548T and a C1702T. The G-350T and the C1702T variants were in complete linkage disequilibrium, and the C1548T variant was relatively rare; therefore, only the C-512T and G-350T variants were additionally genotyped in 937 fullblooded Pima Indians. Neither of these polymorphisms were associated with type 2 diabetes; however, the C-512T variant was associated with BMI (P ؍ 0.03) and percentage of body fat (P ؍ 0.02) in male and female Pima subjects, as well as with basal glucose turnover and fasting plasma triglycerides in women. Our data indicate that variation in FOXC2 may have a minor role in body weight control and seems to be involved in the regulation of basal glucose turnover and plasma triglyceride levels in women, but this gene does not significantly contribute to the etiology of type 2 diabetes in Pima Indians. Diabetes 52:1292-1295, 2003 T he forkhead box C2 (FOXC2; also known as homologue-like 14 or mesenchyme forkhead 1) is a winged helix transcription factor whose clinical relevance was first recognized in the context of hereditary lymphedema. Several loss-of-function mutations were initially identified in families with lymphedema distichiasis (1), a condition characterized not only by lymphedema of the limbs but also by double rows of eyelashes (distichiasis), cardiac defects, cleft palate, extradural cysts, and photophobia, illustrating the developmental pleiotropy of this transcription factor.The role of FOXC2 as a key regulator of adipocyte metabolism has recently been described (2). In mice overexpressing FOXC2 in adipocytes, the intra-abdominal white adipose tissue depot was reduced and had acquired a histology similar to brown adipose tissue, whereas interscapular brown adipose tissue was hypertrophic. Increased adipocyte FOXC2 expression had a pleiotropic effect on the expression of genes influencing cellular differentiation and metabolism, insulin action, -adrenergic sensitivity, and intracellular signaling. The net effect of these FOXC2-related alterations was consistent with protection against obesity. Furthermore, increased FOXC2 expression induced by a high-fat diet seemed to counteract most of the symptoms associated with obesity, including hypertriglyceridemia and diet-induced insulin resistance, suggesting a protective effect also against type 2 diabetes. These findings in mice suggest that FOXC2 is a plausible candidate gene for obesity, insulin resistance, and type 2 diabetes in humans.The prevalence of obesity and type 2 diabetes...