2019
DOI: 10.1002/jccs.201800492
|View full text |Cite
|
Sign up to set email alerts
|

Synthesis of TiO2 on different substrates by chemical vapor deposition for photocatalytic reduction of Cr(VI) in water

Abstract: TiO2 loaded on several substrates such as carbon fiber, aluminum plate, silica plate, and glass plate was prepared using the chemical vapor deposition (CVD) method for the photocatalytic reduction of Cr(VI) in water with the presence of ethanol under Ultraviolet (UV) illumination. As‐prepared samples were characterized by X‐Ray Diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), and scanning electron microscopy (SEM). The catalyst with TiO2 loaded on carbon fiber possessed … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
7
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 19 publications
(8 citation statements)
references
References 37 publications
0
7
0
1
Order By: Relevance
“…TiO 2 nanoparticle is one of the most proper and popular semiconductors whose applications cover diverse industrial areas including photocatalysis [1,2], thin-lm, sunscreen, photovoltaic, electrodes [3,4], sensors [5,6], and drug delivery [7,8]. In this regard, TiO 2 nanoparticle have been prepared through different methods, including sol-gel [9], inverse micelle [10,11], hydrothermal [12], straight oxidation [13][14][15], chemical vapor deposition [16][17][18], physical vapor deposition [19][20][21], electrochemical accumulation [22][23][24], sonochemical [25], microwave [26][27][28], and organometallic complex compounds [29][30][31][32][33][34]. However, almost all of the mentioned methods require high temperature (usually more than 500) [35].…”
Section: Introductionmentioning
confidence: 99%
“…TiO 2 nanoparticle is one of the most proper and popular semiconductors whose applications cover diverse industrial areas including photocatalysis [1,2], thin-lm, sunscreen, photovoltaic, electrodes [3,4], sensors [5,6], and drug delivery [7,8]. In this regard, TiO 2 nanoparticle have been prepared through different methods, including sol-gel [9], inverse micelle [10,11], hydrothermal [12], straight oxidation [13][14][15], chemical vapor deposition [16][17][18], physical vapor deposition [19][20][21], electrochemical accumulation [22][23][24], sonochemical [25], microwave [26][27][28], and organometallic complex compounds [29][30][31][32][33][34]. However, almost all of the mentioned methods require high temperature (usually more than 500) [35].…”
Section: Introductionmentioning
confidence: 99%
“…TiO 2 nanoparticle is one of the most proper and popular semiconductors whose applications cover diverse industrial areas including photocatalysis [1,2], thin-lm, sunscreen, photovoltaic, electrodes [3,4], sensors [5,6], and drug delivery [7,8]. In this regard, TiO 2 nanoparticle have been prepared through different methods, including sol-gel [9], inverse micelle [10,11], hydrothermal [12], straight oxidation [13][14][15], chemical vapor deposition [16][17][18], physical vapor deposition [19][20][21], electrochemical accumulation [22][23][24], sonochemical [25], microwave [26][27][28], and organometallic complex compounds [29][30][31][32][33][34]. However, almost all of the mentioned methods require high temperature (usually more than 500) [35].…”
Section: Introductionmentioning
confidence: 99%
“…This is owing to its ability to mineralize various types of organic pollutants into harmless compounds. [4,5] Nonetheless, the ability of TiO 2 is inhibited by two factors, which are fast electron-hole recombination and can only be activated under UV-light irradiation because of its large band gap. [6,7] However, these drawbacks can be overcome through structure modification to increase porosity and form site defects, which are Ti 3+ site defects (TSDs) and oxygen vacancies (OVs).…”
Section: Introductionmentioning
confidence: 99%