Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The ability of some metal-reducing bacteria to produce a rough (no O-antigen) lipopolysaccharide (LPS) could facilitate surface interactions with minerals and metal reduction. Consistent with this, the laboratory model metal reducer Geobacter sulfurreducens PCA produced two rough LPS isoforms (with or without a terminal methyl-quinovosamine sugar) when growing with the soluble electron acceptor, fumarate, but only expressed the shorter and more hydrophilic variant when reducing iron oxides. We reconstructed from genomic data conserved pathways for the synthesis of the rough LPS and generated heptosyltransferase mutants with partial (Δ rfaQ ) and complete (Δ rfaC ) truncations in the core oligosaccharide. The stepwise removal of the LPS core sugars reduced the hydrophilicity of the cell and increased outer membrane vesiculation. These changes in outer membrane charge and remodeling did not substantially impact planktonic growth but disrupted the developmental stages and structure of electroactive biofilms. Furthermore, the mutants assembled conductive pili for the extracellular mineralization of the toxic uranyl cation, yet were unable to prevent the permeation and mineralization of the radionuclide in the cell envelope. Hence, not only does the rough LPS promote cell-cell and cell-mineral interactions critical to biofilm formation and metal respiration, but it also functions as a permeability barrier to toxic metal cations. In doing so, the rough LPS maximizes the extracellular reduction of soluble and insoluble metals and preserves cell envelope functions critical to the environmental survival of Geobacter bacteria in metal rich environments and their performance in bioremediation and bioenergy applications. Importance Some metal-reducing bacteria produce a lipopolysaccharide (LPS) without the repeating sugars (O-antigen) that decorate the surface of most Gram-negative bacteria, but the biological significance of this adaptive feature has never been investigated. Using the model representative Geobacter sulfurreducens strain PCA and mutants carrying stepwise truncations in the LPS core sugars, we demonstrate the importance of the rough LPS in the control of cell surface chemistry during the respiration of iron minerals and the formation of electroactive biofilms. Importantly, we describe hitherto overlooked roles for the rough LPS in metal sequestration and outer membrane vesiculation that are critical for the extracellular reduction and detoxification of toxic metals and radionuclides. These results are of interest for the optimization of bioremediation schemes and electricity-harvesting platforms using these bacteria.
The ability of some metal-reducing bacteria to produce a rough (no O-antigen) lipopolysaccharide (LPS) could facilitate surface interactions with minerals and metal reduction. Consistent with this, the laboratory model metal reducer Geobacter sulfurreducens PCA produced two rough LPS isoforms (with or without a terminal methyl-quinovosamine sugar) when growing with the soluble electron acceptor, fumarate, but only expressed the shorter and more hydrophilic variant when reducing iron oxides. We reconstructed from genomic data conserved pathways for the synthesis of the rough LPS and generated heptosyltransferase mutants with partial (Δ rfaQ ) and complete (Δ rfaC ) truncations in the core oligosaccharide. The stepwise removal of the LPS core sugars reduced the hydrophilicity of the cell and increased outer membrane vesiculation. These changes in outer membrane charge and remodeling did not substantially impact planktonic growth but disrupted the developmental stages and structure of electroactive biofilms. Furthermore, the mutants assembled conductive pili for the extracellular mineralization of the toxic uranyl cation, yet were unable to prevent the permeation and mineralization of the radionuclide in the cell envelope. Hence, not only does the rough LPS promote cell-cell and cell-mineral interactions critical to biofilm formation and metal respiration, but it also functions as a permeability barrier to toxic metal cations. In doing so, the rough LPS maximizes the extracellular reduction of soluble and insoluble metals and preserves cell envelope functions critical to the environmental survival of Geobacter bacteria in metal rich environments and their performance in bioremediation and bioenergy applications. Importance Some metal-reducing bacteria produce a lipopolysaccharide (LPS) without the repeating sugars (O-antigen) that decorate the surface of most Gram-negative bacteria, but the biological significance of this adaptive feature has never been investigated. Using the model representative Geobacter sulfurreducens strain PCA and mutants carrying stepwise truncations in the LPS core sugars, we demonstrate the importance of the rough LPS in the control of cell surface chemistry during the respiration of iron minerals and the formation of electroactive biofilms. Importantly, we describe hitherto overlooked roles for the rough LPS in metal sequestration and outer membrane vesiculation that are critical for the extracellular reduction and detoxification of toxic metals and radionuclides. These results are of interest for the optimization of bioremediation schemes and electricity-harvesting platforms using these bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.