Synthesis, crystallographic characterization, and time evaluation morphology of stable copper nanoparticles (CuNPs) have been reported for the first time at room temperature without the protection of any inert gas in presence of cetyltrimethylammonium bromide (CTABr). The morphology and structure determination were determined by using the conventional techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), electron diffraction (EDX) patterns, thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Reaction time has marked influence on the size, shape, and the size distribution of CuNPs. From the TEM analysis, it was found that the initially, quantum dots, nanorods and some irregular particles were formed. As the reaction time increases, triangular nanoplates along with nanorods were formed. The optical band gap and width of the band tail of the Cu nanostructural were estimated by using the absorption spectrum fitting method. The work reported in this paper would be helpful for the large-scale production of CuNPs at room temperature.