2020
DOI: 10.1007/s11051-020-04783-0
|View full text |Cite
|
Sign up to set email alerts
|

Synthesis of gold-coated branched ZnO nanorods for gas sensor fabrication

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 11 publications
(1 citation statement)
references
References 39 publications
0
1
0
Order By: Relevance
“…3.4 eV [15], which falls into the range where UV, 100-400 nm of wavelength, could excite electron transitions. Therefore, ZnO has been actively investigated, for example, in the form of polycrystalline films [16,17], nanoparticles [18], nanorods [19][20][21], microspheres [22], subµm-thick fibers [23], single-crystalline sheets [24], and various nanostructured layers [25] as promising UV-activated gas sensor versus mainly alcohol vapors. In this case, the structures which have a large surface to interact with the gaseous phase but rather a thin bulk, down to nanodomain, to be effectively modulated by surface processes are advantageous.…”
Section: Introductionmentioning
confidence: 99%
“…3.4 eV [15], which falls into the range where UV, 100-400 nm of wavelength, could excite electron transitions. Therefore, ZnO has been actively investigated, for example, in the form of polycrystalline films [16,17], nanoparticles [18], nanorods [19][20][21], microspheres [22], subµm-thick fibers [23], single-crystalline sheets [24], and various nanostructured layers [25] as promising UV-activated gas sensor versus mainly alcohol vapors. In this case, the structures which have a large surface to interact with the gaseous phase but rather a thin bulk, down to nanodomain, to be effectively modulated by surface processes are advantageous.…”
Section: Introductionmentioning
confidence: 99%