2019
DOI: 10.3390/molecules24010189
|View full text |Cite
|
Sign up to set email alerts
|

Synthesis of diN-Substituted Glycyl-Phenylalanine Derivatives by Using Ugi Four Component Reaction and Their Potential as Acetylcholinesterase Inhibitors

Abstract: Ugi four component reaction (Ugi-4CR) isocyanide-based multicomponent reactions were used to synthesize diN-substituted glycyl-phenylalanine (diNsGF) derivatives. All of the synthesized compounds were characterized by spectroscopic and spectrometric techniques. In order to evaluate potential biological applications, the synthesized compounds were tested in computational models that predict the bioactivity of organic molecules by using only bi-dimensional molecular information. The diNsGF derivatives were predi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2019
2019

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 46 publications
0
1
0
Order By: Relevance
“…In this review, we highlight the importance of using both, experimental and theoretical approaches such as green chemistry and molecular modeling, aimed to the rational drug design targeting NDD. Our multidisciplinary research team is working in different institutions and countries, tackling the lack of active and effective compounds against NDD, by synthesizing active molecules such as tetrahydroquinolines [17], diN-substituted glycyl-phenylalanine derivatives [18], coumarin-quinoline hybrids [19], aryl-1, 2, 3-triazolyl benzylpiperidines [20], indolylpiperidines [21], and glycogen synthase kinase-3 (GSK3) and tau-aggregation inhibitors [22], among others. These novel active molecules have been obtained by using a combination of green chemistry protocols, predictive chemoinformatics tools, and molecular modeling approaches.…”
Section: Introductionmentioning
confidence: 99%
“…In this review, we highlight the importance of using both, experimental and theoretical approaches such as green chemistry and molecular modeling, aimed to the rational drug design targeting NDD. Our multidisciplinary research team is working in different institutions and countries, tackling the lack of active and effective compounds against NDD, by synthesizing active molecules such as tetrahydroquinolines [17], diN-substituted glycyl-phenylalanine derivatives [18], coumarin-quinoline hybrids [19], aryl-1, 2, 3-triazolyl benzylpiperidines [20], indolylpiperidines [21], and glycogen synthase kinase-3 (GSK3) and tau-aggregation inhibitors [22], among others. These novel active molecules have been obtained by using a combination of green chemistry protocols, predictive chemoinformatics tools, and molecular modeling approaches.…”
Section: Introductionmentioning
confidence: 99%