2020
DOI: 10.3390/m1111
|View full text |Cite
|
Sign up to set email alerts
|

Synthesis and Isolation of Diastereomeric Anomeric Sulfoxides from a d-Mannuronate Thioglycoside Building Block

Abstract: Methyl [S-phenyl 4-O-acetyl-2,3-di-O-benzyl-1-thio-α-d-mannopyranoside (R/S)S-oxide] uronate was synthesised from a thioglycoside mannosyl uronate donor in a 98% yield. By using one equivalent of meta-chloroperbenzoic acid (m-CPBA) as the sulphur oxidant, a smooth conversion to the diastereomeric sulfoxide products was achieved. The product was fully characterized by 1H, 13C and 2D NMR alongside MS analysis.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 14 publications
0
1
0
Order By: Relevance
“…In the seventh paper, an unexpected epoxide-oxetane rearrangement was observed during the synthesis of symmetrical dodeco-6,7-diuloses, that are potential candidates for inhibition of glycosidases [8]. In the eighth paper, a novel glycosyl sulfoxide was synthesized from a S-phenyl thioglycoside for the preparation of alginate oligosaccharides [9]. In the ninth paper, the authors discovered that the incorporation of 8-fluoro-N-2-isobutyryl-2 -deoxyguanosine into oligonucleotides through the phosphoramidite chemistry-based solid phase synthesis failed to give the desired products.…”
mentioning
confidence: 99%
“…In the seventh paper, an unexpected epoxide-oxetane rearrangement was observed during the synthesis of symmetrical dodeco-6,7-diuloses, that are potential candidates for inhibition of glycosidases [8]. In the eighth paper, a novel glycosyl sulfoxide was synthesized from a S-phenyl thioglycoside for the preparation of alginate oligosaccharides [9]. In the ninth paper, the authors discovered that the incorporation of 8-fluoro-N-2-isobutyryl-2 -deoxyguanosine into oligonucleotides through the phosphoramidite chemistry-based solid phase synthesis failed to give the desired products.…”
mentioning
confidence: 99%