The contamination of both soil and water by nitrobenzene (NB) is a problem that has been studied, where several reactive agents have been developed for the degradation of this compound as well as different methods. Nanoparticles with semiconductive properties have been studied for organic compounds photodegradation due to their assistance in optimizing the degradation processes. Two of the most promising photocatalysts are ZnO and TiO2 because of their optimal results. In the present work the performance of the zinc peroxide (ZnO2) nanoparticles was evaluated. ZnO2 nanoparticles were synthesized from zinc acetate and hydrogen peroxide using the Sol-Gel method under ultrasound assistance. The characterization was carried out by UV–Vis spectroscopy, infrared Fourier transform total reflectance (ATR-FT-IR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), Zeta potential, dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), and Energy Dispersive X-ray spectroscopy (EDX). The experiments for the degradation of NB were carried out in a photoreactor with UV lamps of 254 nm at 25 °C, using a solution of nitrobenzene with the nanoparticles. The best conditions for NB photodegradation were 30 ppm (ZnO2) and 15 ppm (NB) at pH 2, reaching up to 90% degradation in 2 h. The intermediates formed during the photodegradation of NB were identified by gas chromatography mass spectrometry.