2019
DOI: 10.1016/j.jallcom.2019.01.264
|View full text |Cite
|
Sign up to set email alerts
|

Synergistic coupling effect of sodium and fluorine co-substitution on enhancing rate capability and cycling performance of Ni-rich cathode for lithium ion battery

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

3
26
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 61 publications
(33 citation statements)
references
References 47 publications
3
26
0
1
Order By: Relevance
“…However, NCM/CB cathode displays a higher value of Ni 3+ /Ni 2+ (1.35), indicating its ideal stoichiometric composition with less anti-defects. 25,[36][37][38] As shown in Fig. 4c, the O 1s peak at approximately 529.3 eV related to the lattice oxygen in the metal framework.…”
Section: Resultsmentioning
confidence: 89%
“…However, NCM/CB cathode displays a higher value of Ni 3+ /Ni 2+ (1.35), indicating its ideal stoichiometric composition with less anti-defects. 25,[36][37][38] As shown in Fig. 4c, the O 1s peak at approximately 529.3 eV related to the lattice oxygen in the metal framework.…”
Section: Resultsmentioning
confidence: 89%
“…Although impurity phases are not observed in Figure 1 , the research based on synchrotron XRD analysis confirmed the limited solubility of Ga in the LiNiO 2 and the formation of impurity phase Li 5 GaO 4 for the Ga-doped LiNiO 2 samples [ 34 ]. The Li + diffusion coefficient can also be calculated by using the method in reference [ 28 ] to process the EIS data. The obtained Li + diffusion coefficients for the samples with Ga content x = 0, 0.01, 0.02, 0.03, and 0.05 are 1.30 × 10 −12 , 5.80 × 10 −11 , 8.85 × 10 −11 , 6.92 × 10 −11 , and 3.81 × 10 −11 cm 2 s −1 , respectively.…”
Section: Resultsmentioning
confidence: 99%
“…Because F has strong electronegativity, a more stable crystal structure can be obtained while F ions are doped into the oxygen site of NCM622 material. All of the F-doped samples [ 27 ], including those co-doped with Na and Mg electrode materials [ 28 , 29 ], showed a good rate performance and excellent cycle performance. Recently, the doping and coating of dual functional modified materials prepared by using the same source, such as PO 4 3– gradient doping and Li 3 PO 4 coating dual functional materials [ 30 ], Zr doping and amorphous Li 2 ZrO 3 coating dual functional materials [ 31 ], have also been reported to greatly improve the cycle performance of NCM622 under high temperature and high voltage.…”
Section: Introductionmentioning
confidence: 99%
“…不同掺杂元素占据的晶格点位有所区别, 而取 代不同点位对 NCM 性能的改善也有所不同。Ta 对 NCM811 的高温(45 ℃)放电比容量和循环性能提 升、电压滞后降低等有益处; Zr、Mg 掺杂时材料的 c 轴变化率更小, 循环性能更佳, 但倍率较差; 使用 Al、Ti、Si 进行掺杂时循环性能也有一定程度的提 高, 但提升效果不如 Ta、Zr、Mg [118] 。必要时, 可 以采用多元素共掺杂的方式。取代 Li 位的 Na 在扩 大锂层层间距的同时, 也有加强结构稳定性的作用, 而掺杂在 O 位的 F 则有利于增强晶型和界面稳定性, 同时进行 Na 和 F 掺杂时, 两者的协同作用能够全面 提升 NCM622 的性能, 如首周库仑效率、倍率、循 环等 [119] 。Mg-Al-B 共掺杂 [120] [121] 。例如, Li 等 [122] 在使用 Zr 对 NCM811 进行掺杂改性时发现, 材料表面会形成一 层 1~2 nm 的 Li 2 ZrO 3 包覆层。 Zr 的掺杂和包覆双重 作用使 NCM811 具有更优的倍率性能和循环性能 [123] 。 由于低镍材料具有更好的稳定性, 因此可以设计内 部富 Ni 表面富 Co、Mn 的梯度材料, 同时提升电性 能和结构性能 [124][125][126] 。有意思的是, 自发形成掺杂/ 包覆双重效果时, 掺杂元素在体相中往往呈梯度分 布, 梯度分布的 Ge 元素能够抑制阳离子混排, 同时 还有利于改善 Li + 离子传输通道 [127] 。阴离子掺杂时 也 有 类 似 效 果 , Ran 等 [128] [70,[129][130][131][132] 。 梯度掺杂还能够在正极材料的表面形成一层无序的 层状结构(图 9), 这种结构比岩盐相更有利于锂离子 的传输, 掺杂元素又进一步提高了氧骨架的坚固性, 形成了特殊的掺杂/包覆结构 [133][134]…”
Section: 小结unclassified