We study the solvation and electrostatic properties of bare gold (Au) nanoparticles (NPs) of 1-2 nm in size in aqueous electrolyte solutions of sodium salts of various anions with large physicochemical diversity (Cl<sup>-</sup>, BF<sub>4</sub><sup>-</sup>, PF<sub>6</sub><sup>-</sup>, Nip<sup>-</sup>(nitrophenolate), 3- and 4-valent hexacyanoferrate (HCF)) using nonpolarizable, classical molecular dynamics computer simulations. We find a substantial facet selectivity in the adsorption structure and spatial distribution of the ions at the Au-NPs: while sodium and some of the anions (e.g., Cl<sup>-</sup>, HCF<sup>3-</sup>) adsorb more at the `edgy' (100) and (110) facets of the NPs, where the water hydration structure is more disordered, other ions (e.g., BF<sub>4</sub><sup>-</sup>, PF<sub>6</sub><sup>-</sup>, Nip<sup>-</sup>) prefer to adsorb strongly on the extended and rather flat (111) facets. In particular, Nip<sup>-</sup>, which features an aromatic ring in its chemical structure, adsorbs strongly and perturbs the first water monolayer structure on the NP (111) facets substantially. Moreover, we calculate adsorptions, radially-resolved electrostatic potentials, as well as the far-field <i>effective</i> electrostatic surface charges and potentials by mapping the long-range decay of the calculated electrostatic potential distribution onto the standard Debye-Hückel form. We show how the extrapolation of these values to other ionic strengths can be performed by an analytical Adsorption-Grahame relation between effective surface charge and potential. We find for all salts negative effective surface potentials in the range from -10 mV for NaCl down to about -80 mV for NaNip, consistent with typical experimental ranges for the zeta-potential. We discuss how these values depend on the surface definition and compare them to the explicitly calculated electrostatic potentials near the NP surface, which are highly oscillatory in the ± 0.5 V range. <br>