2014
DOI: 10.1103/physrevb.90.214427
|View full text |Cite
|
Sign up to set email alerts
|

Symmetry and magnetoelectric effects in garnet crystals and films

Abstract: The magnetoelectricity of garnets is considered by means of a symmetry and quantum mechanical combined analysis. It is shown, that the magnetoelectric effect is not realized in most garnets although the necessary condition of the crystal magnetic structure antisymmetry in them is held at low temperatures. Nevertheless, the effect can be observed in some garnets as well as other odd effects, namely, piezomagnetic effect, magnetic field evoked piezoelectric one, etc. It is also discovered that magnetic fields ca… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0
9

Year Published

2015
2015
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 25 publications
(27 citation statements)
references
References 39 publications
0
8
0
9
Order By: Relevance
“…Both hypotheses considered in Section 3, i.e., the electric polarization induced by magnetic inhomogeneities (inhomogeneous magnetoelectric interaction) [4,43,77] and the local variation of the magnetic anisotropy induced by an inhomogeneous electric field at the site of location of the needle [21,42], make it possible to explain the basic features of the effects described in Section 2. At the same time, detection (by the single-molecule spectroscopy method) of the electric field connected with magnetic inhomogeneities in the films of iron garnets [25] counts in favor of the first mechanism.…”
Section: Discussionmentioning
confidence: 99%
“…Both hypotheses considered in Section 3, i.e., the electric polarization induced by magnetic inhomogeneities (inhomogeneous magnetoelectric interaction) [4,43,77] and the local variation of the magnetic anisotropy induced by an inhomogeneous electric field at the site of location of the needle [21,42], make it possible to explain the basic features of the effects described in Section 2. At the same time, detection (by the single-molecule spectroscopy method) of the electric field connected with magnetic inhomogeneities in the films of iron garnets [25] counts in favor of the first mechanism.…”
Section: Discussionmentioning
confidence: 99%
“…We consider the most important geometries of a magnetic field, namely the magnetic field applied along normal to a film (H || [100]) and the magnetic field applied in a film plane in the direction of "hard magnetization" (in a case of Kco0, the "hard magnetization" direction corresponds to the axis [010]) (H || [010]). As the model objects we take ferrite-garnet films, materials possessing with magnetoelectric properties [14,[19][20][21], whose characteristic parameters vary in a wide range, we use A¼10 7 erg/cm 2 , M 0 ¼70 G, K 1,2,c $ (10 3 -10 5 ) erg/cm 3 , γ¼10 À 6 (erg/cm) 1/2 .…”
Section: General Equationsmentioning
confidence: 99%
“…Используем далее процедуру получения эф-фективных гамильтонианов, изложенную в [3], и после несложных, но громоздких выкладок найдем, что пье-зоэлектрические поправки к уровням энергии (3) мо-гут быть представлены оператором пьезоэлектрическо-го взаимодействия редкоземельного иона (в локальных осях k-го места)…”
Section: неоднородная деформация и электрическая поляризация редкоземunclassified
“…РЗ-ионы в кристаллах гранатов размещены по 6 кристал-лографически неэквивалентным местам, обладающим более низкой, чем кубическая симметрией окружения. Симметрия окружения РЗ-ионов в гранатах описывается точечной группой D 2 , которая не содержит простран-ственной инверсии (что является принципиально важ-ным обстоятельством для понимания магнитоэлектри-ки гранатов [3,4]). Для выяснения физических свойств редкоземельных гранатов достаточно ограничиться рас-смотрением их примитивной ячейки, которая в два раза меньше элементарной, содержит 4 формульные единицы R 3 M 5 O 12 [8].…”
Section: Introductionunclassified