Sustainable Polymers From Biomass 2017
DOI: 10.1002/9783527340200.ch4
|View full text |Cite
|
Sign up to set email alerts
|

Sustainable Vinyl Polymers via Controlled Polymerization of Terpenes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
25
0
3

Year Published

2018
2018
2022
2022

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 24 publications
(29 citation statements)
references
References 139 publications
0
25
0
3
Order By: Relevance
“…[16][17][18][19] Obviously, abundant natural products especially from non-edible parts of plants are preferred for this from aviewpoint of compatibility with nutrition/crop area requirements.Ageneral classification can be made into ap olymer approach, where natural polymers are utilized for the preparation of materials (for example,c ellulose and its composites [20,21] or the microbial polyesters polyhydroxyalkanoates [22] ), and am olecular (monomer) approach, where natural monomers are polymerized with or without prior modification to afford sustainable polymers.W ithin this molecular biomass,f our main groups can be classified, namely oxygen-rich biomass,h ydrocarbonrich biomass,h ydrocarbon biomass,a nd non-hydrocarbon biomass. [27][28][29][30][31][32][33][34][35][36][37] Within this substance class,s ignificant progress has been made especially within the past few years with the isomeric monoterpenes a-pinene and b-pinene (Scheme 1A;a lso other isomers do exist), the main constituents of turpentine oil (from pine trees), whose production is currently about 350 000 t/a, with very high potential to increase. [27][28][29][30][31][32][33][34][35][36][37] Within this substance class,s ignificant progress has been made especially within the past few years with the isomeric monoterpenes a-pinene and b-pinene (Scheme 1A;a lso other isomers do exist), the main constituents of turpentine oil (from pine trees), whose production is currently about 350 000 t/a, with very high potential to increase.…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations
“…[16][17][18][19] Obviously, abundant natural products especially from non-edible parts of plants are preferred for this from aviewpoint of compatibility with nutrition/crop area requirements.Ageneral classification can be made into ap olymer approach, where natural polymers are utilized for the preparation of materials (for example,c ellulose and its composites [20,21] or the microbial polyesters polyhydroxyalkanoates [22] ), and am olecular (monomer) approach, where natural monomers are polymerized with or without prior modification to afford sustainable polymers.W ithin this molecular biomass,f our main groups can be classified, namely oxygen-rich biomass,h ydrocarbonrich biomass,h ydrocarbon biomass,a nd non-hydrocarbon biomass. [27][28][29][30][31][32][33][34][35][36][37] Within this substance class,s ignificant progress has been made especially within the past few years with the isomeric monoterpenes a-pinene and b-pinene (Scheme 1A;a lso other isomers do exist), the main constituents of turpentine oil (from pine trees), whose production is currently about 350 000 t/a, with very high potential to increase. [27][28][29][30][31][32][33][34][35][36][37] Within this substance class,s ignificant progress has been made especially within the past few years with the isomeric monoterpenes a-pinene and b-pinene (Scheme 1A;a lso other isomers do exist), the main constituents of turpentine oil (from pine trees), whose production is currently about 350 000 t/a, with very high potential to increase.…”
Section: Introductionmentioning
confidence: 99%
“…a-pinene has an internal trisubstituted carbon-carbon double bond in its six-membered ring and is difficult to polymerize into high polymers owing to the large steric hindrance.I nc ontrast, b-pinene has ar eactive exo methylene group and exhibits thus much higher reactivity. [53][54][55][56][57][58] Furthermore,a dvanced polymerization strategies and also different functionalizations of the double bonds of pinenes can be performed for the preparation of av ariety of different monomers and polymers (Scheme 1A), which is highlighted in the following paragraphs.F urthermore, considering the immense potential of catalytic upgrading of pinenes, [35] suchlike approaches are very likely to gain increasing impact in the near future. [43,44] They find applications for example,a sa dhesives or additives in rubber.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…[16][17][18][19] Naheliegenderweise werden hierfürr eichlich vorhandene Naturstoffe hauptsächlich aus nicht-essbaren Pflanzen(teilen) bevorzugt, im Hinblick auf die Kompatibilitätm it den Anforderungen bezüglich der landwirtschaftlichen Flächen für den Nahrungsanbau. [27][28][29][30][31][32][33][34][35][36][37] Innerhalb dieser Substanzklasse wurden insbesondere in den letzten paar Jahren signifikante Fortschritte mit den isomeren Monoterpenen a-Pinen und b-Pinen erzielt (Schema 1A;esgibt auch noch weitere Isomere). B. Zellulose und deren Komposite [20,21] oder die mikrobiellen Polyhydroxyalkanoat-Polyester [22] ), und ein molekularer (Monomer)-Ansatz, bei dem natürliche Monomere polymerisiert werden, mit oder ohne vorangegangener Modifizierung,u mn achhaltige Polymere zu erhalten.…”
Section: Einführungunclassified
“…[23][24][25][26] Im vergangenen Jahrzehnt haben sich die Te rpene,aus der Gruppe der Kohlenwasserstoff-reichen Biomasse,a ls sehr vielseitige Bausteine fürdie Synthese von Polymeren bewährt und etabliert. [27][28][29][30][31][32][33][34][35][36][37] Innerhalb dieser Substanzklasse wurden insbesondere in den letzten paar Jahren signifikante Fortschritte mit den isomeren Monoterpenen a-Pinen und b-Pinen erzielt (Schema 1A;esgibt auch noch weitere Isomere). a-Pinen und b-Pinen sind die Hauptbestandteile von Te rpentin-Öl( aus Pinien/Kiefern) und ihre Produktion liegt derzeit bei ca.…”
Section: Einführungunclassified