Municipal solid waste (MSW) directly impacts community health and environmental degradation; therefore, the management of MSW is crucial. Medical waste is a specific type of MSW which is generally divided into two categories: infectious and non-infectious. Wastes generated by coronavirus disease 2019 (COVID-19) are classified among infectious medical wastes; moreover, these wastes are hazardous because they threaten the environment and living organisms if they are not appropriately managed. This paper develops a bi-objective mixed-integer linear programming model for medical waste management during the COVID-19 outbreak. The proposed model minimizes the total costs and risks, simultaneously, of the population’s exposure to pollution. This paper considers some realistic assumptions for the first time, including location-routing problem, time window-based green vehicle routing problem, vehicles scheduling, vehicles failure, split delivery, population risk, and load-dependent fuel consumption to manage both infectious and non-infectious medical waste. We apply a fuzzy goal programming approach for solving the proposed bi-objective model, and the efficiency of the proposed model and solution approach is assessed using data related to 13 nodes of medical waste production in a location west of Tehran.