1959
DOI: 10.3367/ufnr.0067.195904b.0581
|View full text |Cite
|
Sign up to set email alerts
|

Surface ionization

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

1
25
0
2

Year Published

1966
1966
2023
2023

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 47 publications
(39 citation statements)
references
References 1 publication
(2 reference statements)
1
25
0
2
Order By: Relevance
“…In their saturated vapor at rather high temperatures (>700 K), where electron donors M in the condensed phase are ionized by almost 100%, the pressure values of M and electrons are connected by a direct proportional dependence of P(M) = AP(e), where the A is the constant depending on temperature and the properties of an alkali metal. From the equality of the density i of electron fluxes into the gas phase and to the emitting surface and con dition Φ = ϕ(M) or P(M) = P 0 (M) (1) we obtain and Here, R e and are the reflection coefficients of elec trons from the potential barrier at the emitter surface dur ing their transition from the crystal into the gas and from the gas into the crystal, respectively (R э = [6]); m is the electron mass; h and k are the Planck constant and the Boltzmann constant, respectively; T is temperature (K); ϕ is the work function of the doped condensed phase; and ϕ(M) and PT 0 (M) are the work function (eV) and the saturated vapor pressure (atm) of the alkali metal. …”
Section: Work Function Of Salt Systemsmentioning
confidence: 99%
See 1 more Smart Citation
“…In their saturated vapor at rather high temperatures (>700 K), where electron donors M in the condensed phase are ionized by almost 100%, the pressure values of M and electrons are connected by a direct proportional dependence of P(M) = AP(e), where the A is the constant depending on temperature and the properties of an alkali metal. From the equality of the density i of electron fluxes into the gas phase and to the emitting surface and con dition Φ = ϕ(M) or P(M) = P 0 (M) (1) we obtain and Here, R e and are the reflection coefficients of elec trons from the potential barrier at the emitter surface dur ing their transition from the crystal into the gas and from the gas into the crystal, respectively (R э = [6]); m is the electron mass; h and k are the Planck constant and the Boltzmann constant, respectively; T is temperature (K); ϕ is the work function of the doped condensed phase; and ϕ(M) and PT 0 (M) are the work function (eV) and the saturated vapor pressure (atm) of the alkali metal. …”
Section: Work Function Of Salt Systemsmentioning
confidence: 99%
“…The work function for one mole of electrons is (2) and the pressure of the electron gas is (2) into the Saha-Lang muir equation [6] for the ionization of alkali metal atoms gives…”
Section: Work Function Of Salt Systemsmentioning
confidence: 99%
“…The degree of plasma ionization was determined on known experimental values of ionization efficiency of potassium on a tungsten surface [5] and also it was determined on the attenuation of Hand H + beams in a plasma target.…”
Section: Experimental Setup and Proceduresmentioning
confidence: 99%
“…Ce phénomène, observé pour la première fois par Langmuir [1], a été expliqué par la thermodynamique. Si on considère un gaz monoatomique en équilibre, on obtient la loi de Saha-Langmuir [2,3] qui s'écrit Dans cette relation n,'.. et n~ sont les densités ioniques et électroniques au voisinage immédiat de la surface chaude et no représente la densité des particules neutres. Les autres paramètres sont les suivants : m représente la masse de l'électron, k la constante de Boltzmann, h la constante de Planck, T la température d'équilibre (supposée égale à la température de la surface chaude TE) et Vi le potentiel d'ionisation des atomes de la vapeur métallique.…”
unclassified
“…Dans tous les cas on peut observer que la densité électronique mesurée sur l'axe croît quand on se rapproche de l'émetteur ce qui peut être lié à une diffusion quand la distance émetteur collecteur est grande. Les (2) correspondent encore à une pression de césium de 5 X 10-4 torr alors que les courbes (3) et (4) sont relatives à une pression de césium de 10-'~ torr. Lorsque la sonde radiale est proche de l'axe, nous obtenons les courbes (2) et (4) qui confirment les résultats des courbes de la figure 10, en particulier les densités électroniques mesurées sont plus grandes à pression équivalente puisque cette sonde est plus proche de l'émetteur (8 mm).…”
unclassified