2017
DOI: 10.1021/jacs.7b05251
|View full text |Cite
|
Sign up to set email alerts
|

Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability

Abstract: Significant increases in the energy density of batteries must be achieved by exploring new materials and cell configurations. Lithium metal and lithiated silicon are two promising high-capacity anode materials. Unfortunately, both of these anodes require a reliable passivating layer to survive the serious environmental corrosion during handling and cycling. Here we developed a surface fluorination process to form a homogeneous and dense LiF coating on reactive anode materials, with in situ generated fluorine g… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

10
357
0
5

Year Published

2018
2018
2022
2022

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 422 publications
(385 citation statements)
references
References 47 publications
10
357
0
5
Order By: Relevance
“…F 1s spectra follow the same trend (Figure B), exhibiting a F‐S peak (688.6 eV) at the surface and strengthening LiF (684.6 eV) peak in the inner part as a result of FS reduction by Li metal. The high mechanical modulus and surface energy of LiF were proven to suppress Li dendrites in previous publications . N 1s spectra exhibits four peaks at the surface due to its strong oxidizing nature (Figure C), namely, NO3 (407.0 eV), normalNSO2F2 (401.6 eV), and their reduction products NO2 (403.3 eV) and Li 3 N (399.0 eV).…”
Section: Resultsmentioning
confidence: 73%
“…F 1s spectra follow the same trend (Figure B), exhibiting a F‐S peak (688.6 eV) at the surface and strengthening LiF (684.6 eV) peak in the inner part as a result of FS reduction by Li metal. The high mechanical modulus and surface energy of LiF were proven to suppress Li dendrites in previous publications . N 1s spectra exhibits four peaks at the surface due to its strong oxidizing nature (Figure C), namely, NO3 (407.0 eV), normalNSO2F2 (401.6 eV), and their reduction products NO2 (403.3 eV) and Li 3 N (399.0 eV).…”
Section: Resultsmentioning
confidence: 73%
“…The surface modification of anode materials focused on forming stable SEI layers, which were mostly developed by designing and optimizing electrolyte compositions (see Section 2.3). For example, fluorination treatments were developed for lithium‐metal anodes to form a high‐quality LiF protective layer that could limit the side reactions between the electrolyte and anode material and suppress the formation of lithium dendrites …”
Section: Halides In Lithium‐ion Batteriesmentioning
confidence: 99%
“…A transplantable LiF‐rich layer has been employed to protect the Li anode, successfully suppressing the side reactions between the Li metal and the carbonate‐based electrolytes . A similar impressive achievement was obtained by forming a chemically stable and mechanically strong LiF interphase, which was prepared by fluorinating the surface of the Li metal with in situ generated fluorine gas from a fluoropolymer . Recently, a Li/Al 4 Li 9 ‐LiF nanocomposite anode, which was fabricated through an “overlithiation” of a mesoporous AlF 3 framework, was developed.…”
Section: Introductionmentioning
confidence: 99%
“…Die Oberflächenmodifikation für Anodenmaterialien fokussiert sich auf die Bildung stabiler SEI‐Schichten, die weitestgehend durch Konstruktion und Optimierung der Elektrolytzusammensetzungen (siehe Abschnitt 2.3) entwickelt wurden. Zum Beispiel wurden Fluorierungsbehandlungen für Lithium‐Metall‐Anoden entwickelt, um eine hochwertige LiF‐Schutzschicht zu bilden, welche die Nebenreaktionen zwischen Elektrolyten und Anodenmaterial begrenzen und die Lithiumdendrit‐Bildung unterbinden konnte …”
Section: Halogenide In Lithium‐ionen‐batterienunclassified
“…Eine transplantierbare LiF‐reiche Schicht wurde zum Schutz der Li‐Anode eingesetzt und hat erfolgreich die Nebenreaktionen zwischen dem Li‐Metall und den Carbonat‐basierten Elektrolyten unterbunden . Eine ähnlich beachtliche Errungenschaft konnte durch die Bildung einer chemisch stabilen und mechanisch starken LiF‐Interphase erreicht werden, präpariert durch Fluorierung der Li‐Metall‐Oberfläche mit in situ mit einem Fluorpolymer erzeugtem Fluorgas . Kürzlich wurde eine Li/Al 4 Li 9 ‐LiF Nanokomposit‐Anode, die durch eine “Überlithiierung” eines mesoporösen AlF 3 ‐Gerüsts hergestellt wurde, entwickelt.…”
Section: Introductionunclassified