Context. The origin of the arc-shaped Sh 2-296 nebula is still unclear. Mainly due to its morphology, the nebula has been suggested to be a 0.5 Myr-old supernova remnant (SNR) that could be inducing star formation in the CMa OB1 association. Therefore, this region can be an excellent laboratory for the investigation of the influence of massive stars on their surroundings. Aims. We aim to show, for the first time, that the nebula is part of a large, shell-like structure, which we have designated the "CMa shell", enclosing a bubble created by successive supernova (SN) explosions. We identified three runaway stars, associated with bowshock structures, in the direction of the CMa shell and we investigate the possibility that they have originated in the center of the shell. Methods. By analyzing images of the CMa OB1 association at several wavelengths, we clearly see that the Sh 2-296 nebula is in fact part of a large structure, which can be approximated by a large (with a diameter of ∼ 60 pc) elliptical shell. Using the recent Gaia-DR2 astrometric data, we trace back the path of the three runaway stars, in order to find their original position in the past, with relation to the CMa shell. We also revise the heating and ionization of the Sh 2-296 nebula, by comparing the photon budget provided by the O stars in the region with results from radio observations. Results. We find that the runaway stars have likely been ejected from a Trapezium-like progenitor cluster on three successive SN explosions having taken place ∼ 6, ∼ 2 and ∼ 1 Myr ago. We also show that the few late-type O stars in the region cannot explain the ionization of the Sh 2-296 nebula and other mechanisms need to be at work. Conclusions. We argue that, though we now have evidence for several SNe events in the CMa OB1 association, the SNe probably played a minor role in triggering star formation in these clouds. In contrast, the CMa OB1 association, as it is now, likely testifies to the last stages of a star-forming region.