Red mud (RM) is a common industrial byproduct that is characterized by high alkalinity, high pollution, and difficult utilization. In this paper, gangue (CG), flue gas desulfurization gypsum (FGD), and silicate cement (PC) were used to assist red mud in the preparation of red mud-based composite filler material (RMC), aiming at the large-scale resource utilization of RM. The effects of the mass ratio of RM/CG, the mass ratio of FGD/(RM + CG), and the water–solid ratio (WCR) on the multi-angle properties of RMC were investigated and the optimal ratios were determined. The results showed that the RM/CG was 7:1, FGD/(RM + CG) was 4%, and WCR was 0.51 (RMC8), and the system could increase the RM content to 70%. The microstructural analysis of RMC using a specific surface area and porosity analyzer (BET), X-ray diffractometer (XRD), and scanning electron microscope (SEM) showed that its hydration products could remodel the pore structure, encapsulate and cement the coarse and fine particles into a dense matrix, and play a certain alkali reduction role, which revealed the microscopic synergistic mechanism between multiple solid wastes. The study shows that the comprehensive disposal of RM reduces the pollution released into the environment and provides new ideas for the green development of mines.