2012
DOI: 10.1038/nchem.1527
|View full text |Cite
|
Sign up to set email alerts
|

Sulfur as a selective ‘soft’ oxidant for catalytic methane conversion probed by experiment and theory

Abstract: Developing efficient catalytic processes to convert methane into useful feedstocks relies critically upon devising new coupling processes that use abundant, thermodynamically 'mild' oxidants together with selective catalysts. We report here on elemental sulfur as a promising 'soft' oxidant for selective methane conversion to ethylene over MoS(2), RuS(2), TiS(2), PdS and Pd/ZrO(2) catalysts. Experiments and density functional theory reveal that methane conversion is directly correlated with surface metal-sulfur… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

7
115
5
2

Year Published

2015
2015
2021
2021

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 124 publications
(129 citation statements)
references
References 35 publications
7
115
5
2
Order By: Relevance
“…When comparing all the dehydrogenation reactions, the C-H bond breaking activation energies follow the trend CH < CH 4 < CH 3 < CH 2 , which is the reverse order with previously reported values on some metal sulfide surfaces. 31 It is noteworthy that the order of C-H bond activation energies follows the same trend with the activated C-H bond length of the corresponding transition state. Since all dehydrogenation reactions occur on the IrO 2 (110) surface, entropy losses when changing from initial states to transition states are negligible.…”
Section: View Article Onlinementioning
confidence: 75%
“…When comparing all the dehydrogenation reactions, the C-H bond breaking activation energies follow the trend CH < CH 4 < CH 3 < CH 2 , which is the reverse order with previously reported values on some metal sulfide surfaces. 31 It is noteworthy that the order of C-H bond activation energies follows the same trend with the activated C-H bond length of the corresponding transition state. Since all dehydrogenation reactions occur on the IrO 2 (110) surface, entropy losses when changing from initial states to transition states are negligible.…”
Section: View Article Onlinementioning
confidence: 75%
“…They can be used in catalyzing hydrodesulfurization,8 and methane conversion 59. More researches need to be done in designing new structures utilizing the convenience of edge properties and searching new catalytic reactions.…”
Section: Edges As Active Sitesmentioning
confidence: 99%
“…Die Tr ockenreformierung von Methan (dry reformation of methane,D RM) mit CO 2 als Oxidationsmittel (CH 4 + CO 2 !2CO+ 2H 2 )ist ein günstiger Wegz um Senken der Treibhausgasemissionen und zum Verringern des CH 4 -Verbrauchs.B ei der Entwicklung von Reformierungskatalysatoren konzentrierte sich die Forschung anfangs auf Edelmetallkatalysatoren, wie Rh, Ir,P t, Ru und Pd, von denen Ru und Rh die aktivsten sind. [78,79] 1.5. [77] Auch CH 3 X( X = F, Cl, Br oder I) und CS 2 kçnnen durch Oxidation von Methan hergestellt werden, wobei X 2 bzw.S chwefel als Oxidationsmittel verwendet werden.…”
Section: Aufsätzeunclassified
“…[77] Auch CH 3 X( X = F, Cl, Br oder I) und CS 2 kçnnen durch Oxidation von Methan hergestellt werden, wobei X 2 bzw.S chwefel als Oxidationsmittel verwendet werden. [78,79] [80] Katalysatoren auf Cu/Zn/Al 2 O 3 -Basis, [81] Pt/a-MoC-Katalysatoren [82] und der Homogenkatalysator [RuHCl(CO)(HN(C 2 H 4 PiPr 2 ) 2 )], [83] die im Te mperaturbereich 65-300 8 8Ca rbeiten. Der von der Gruppe von Ma entwickelte Pt/a-MoC-Katalysator zeigt eine ausgezeichnete katalytische Aktivitätf ürd ie Wasserstofferzeugung durch Methanolreformierung mit einer Tu rnover-Frequenz (TOF) von 18 046 h À1 bei tiefen Te mperaturen (150-190 8 8C).…”
Section: Co 2 -Umwandlungunclassified