While previous studies revealed that matrix vesicles (MV) contain a nucleational core (NC) that converts to apatite when incubated with synthetic cartilage lymph, the initial mineral phase present in MV is not well characterized. This study explored the physicochemical nature of this Ca 2؉ and P i -rich NC. MV, isolated from growth plate cartilage, were analyzed directly by solidstate 31 P NMR, or incubated with hydrazine or NaOCl to remove organic constituents. Other samples of MV were subjected to sequential treatments with enzymes, salt solutions, and detergents to expose the NC. We examined the NC using transmission electron microscopy, energy-dispersive analysis with x-rays, and electron and x-ray diffraction, Fourier transform-infrared spectroscopy, high performance thin-layer chromatographic analysis, and SDS-polyacrylamide gel electrophoresis. We found that most of the MV proteins and lipids could be removed without destroying the NC; however, NaOCl treatment annihilated its activity. SDS-polyacrylamide gel electrophoresis showed that annexin V, a phosphatidylserine (PS)-dependent Ca 2؉ -binding protein, was the major protein in the NC; high performance thin-layer chromatographic analysis revealed that the detergents removed the majority of the polar lipids, but left significant free cholesterol and fatty acids, and small but critical amounts of PS. Transmission electron microscopy showed that the NC was composed of clusters of ϳ1.0 nm subunits, which energy-dispersive analysis with x-rays revealed contained Ca and P i with a Ca/P ratio of 1.06 ؎ 0.01. Electron diffraction, x-ray diffraction, and Fourier transform-infrared analysis all indicated that the NC was noncrystalline.