2021
DOI: 10.3390/cryst11101164
|View full text |Cite
|
Sign up to set email alerts
|

Study on Phase Transformation Orientation Relationship of HCP-FCC during Rolling of High Purity Titanium

Abstract: High purity titanium (Ti) thin strip was prepared by rolling with large deformation and was characterized by the means of Transmission Electron Microscopy (TEM), selected area diffraction (SAED) pattern, high-resolution (HRTEM) analysis, as well as Transmission Kikuchi Diffraction (TKD). It is found that there are face-centered cubic (FCC) Ti laths formed within the matrix of hexagonal close packing (HCP) Ti. This shows that the HCP-FCC phase transition occurred during the rolling, and a specific orientation r… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(1 citation statement)
references
References 44 publications
0
1
0
Order By: Relevance
“…Steels and iron-based alloys [2-9]; • Non-ferrous alloys with fcc-(Ni- [10,11] and Cu-based [12][13][14]), or hcp crystal structure (Mg- [15,16] and Ti-based [17,18]). Other examples include Zirconium [19], Bi-Sn alloy [20] or polycarbonate resins [21]; • Multicomponent and high-entropy alloys [22][23][24]; • General theoretical studies on crystal plasticity [25][26][27].…”
mentioning
confidence: 99%
“…Steels and iron-based alloys [2-9]; • Non-ferrous alloys with fcc-(Ni- [10,11] and Cu-based [12][13][14]), or hcp crystal structure (Mg- [15,16] and Ti-based [17,18]). Other examples include Zirconium [19], Bi-Sn alloy [20] or polycarbonate resins [21]; • Multicomponent and high-entropy alloys [22][23][24]; • General theoretical studies on crystal plasticity [25][26][27].…”
mentioning
confidence: 99%