2023
DOI: 10.1080/02670844.2023.2194500
|View full text |Cite
|
Sign up to set email alerts
|

Study of the electroplating process parameters on the electrical resistance of an aluminium alloy with a Cu-graphene-based coating

Abstract: This study investigates the effects of the electroplating process parameters, such as temperature, graphene concentration in the bath and current density, on the electrical properties of a copper-coated aluminium alloy (AA6082). Based on previous experiences, a full factorial plan was developed and tested through the Design of Experiments (DOE) methodology to find a relation between parameters and properties. After validating the setup and the significance of the three input process parameters, a statistical m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 57 publications
0
0
0
Order By: Relevance
“…Copper-based nanocomposites produced through these methods have shown a growing trend in copper surface protection due to their improved mechanical properties, leaving the physical performance of both the substrate and the matrix unaffected, thus enhancing the wear resistance through improved lubricating capability [15][16][17]. In fact, Cu composite coatings with reinforcing phases (such as ceramic or carbonaceous) benefit from both metals and fillers and demonstrate outstanding wear resistance and improved electrical and thermal conductivity and self-lubricating properties, which has led to themattracting increasing interest in industrial fields [18][19][20][21][22].…”
Section: Introductionmentioning
confidence: 99%
“…Copper-based nanocomposites produced through these methods have shown a growing trend in copper surface protection due to their improved mechanical properties, leaving the physical performance of both the substrate and the matrix unaffected, thus enhancing the wear resistance through improved lubricating capability [15][16][17]. In fact, Cu composite coatings with reinforcing phases (such as ceramic or carbonaceous) benefit from both metals and fillers and demonstrate outstanding wear resistance and improved electrical and thermal conductivity and self-lubricating properties, which has led to themattracting increasing interest in industrial fields [18][19][20][21][22].…”
Section: Introductionmentioning
confidence: 99%