Ceria-based mixed oxides, in which about 10 mol % of the cerium is replaced by another metal, catalyze the selective combustion of hydrogen from a mixture of hydrogen, propane, and propene at 550 degrees C. This makes them attractive catalysts for the oxidative dehydrogenation of propane. Hydrogen combustion shifts the equilibrium to the products side, supplies energy for the endothermic dehydrogenation, and simplifies product separation. The type of metal added has an important effect on the catalytic properties. To gain insight into the process, a set consisting of six mixed oxides was synthesized and the catalytic properties and redox behavior were tested. The mixed oxides generally release more oxygen than plain ceria. Mixed oxides containing Bi, Cu, Fe, Pd or Ca release between 1.6 and 2.0 mg of oxygen per 100 mg sample (compared to only 1.2 mg for plain ceria). This result is important for reactions in which the catalyst acts as an oxygen reservoir, such as selective hydrogen combustion. The temperature at which oxygen is released is generally lower for the mixed oxides, and varies from 110 degrees C (for Cu-CeO2) to 550 degrees C (for Ca-CeO2), which enables catalytic applications over a wide temperature range. The reduction rate at 550 degrees C is related to the reduction onset of the catalysts. Those catalysts with a relatively low reduction temperature, such as Cu-, Mn-, Bi-, and Pb-CeO2, show a high reduction rate, whereas those with a high reduction temperature, such as Ca-CeO2, Fe-CeO2, and plain ceria, reduce at a slower rate. The latter catalysts also have a low selectivity towards hydrogen combustion. The influence of the catalyst composition and crystallite size on the activity and selectivity is discussed.