Purpose The purpose of this paper is to analyze the impact of the torque, power, jerk and energy consumed constraints on the generation of minimum time collision-free trajectories for industrial robots in a complex environment. Design/methodology/approach An algorithm is presented in which the trajectory is generated under real working constraints (specifically torque, power, jerk and energy consumed). It also takes into account the presence of obstacles (to avoid collisions) and the dynamics of the robotic system. The method solves an optimization problem to find the minimum time trajectory to perform the tasks the robot should do. Findings Important conclusions have been reached when solving the trajectory planning problem related to the value of the torque, power, jerk and energy consumed and the relationship between them, therefore enabling the user to choose the most efficient way of working depending on which parameter he is most interested in optimizing. From the examples solved we have found the relationship between the maximum and minimum values of the parameters studied.
Research limitations/implicationsThis new approach tries to model the real behaviour of the actuators in order to be able to upgrade the trajectory quality. So a lot of work has to be done in this field.
Practical implicationsThe algorithm solve the trajectory planning problem for any industrial robot and the real characteristics of the actuators are taken into account which is essential to improve the performance of it. Originality/value This new tool enables us to improve the performance of the robot by combining adequately the values of the mentioned parameters (torque, power, jerk and consumed energy).