Self-reinforced poly(ethylene terephthalate) laminates were prepared from woven fabric by compression moulding. The fabric was stretched to different degrees during heating before hot consolidation to simulate a manufacturing process where the material is stretched through forming. High tenacity poly(ethylene terephthalate) fibres with different degrees of stretching were prepared for a comparison to laminates. Tensile tests were made to characterize mechanical properties, while dynamical mechanical analysis, differential scanning calorimetry, FTIR spectroscopy and X-ray diffraction analysis were employed to study microstructural changes caused by the stretching. Tensile tests show that 13% stretching of the fabric increases the laminate tensile stiffness by 34%. However, same degree of stretching for pure fibres increases the fibre tensile stiffness by 111%. Crystallinity and molecular conformations are not influenced by stretching while shrinkage upon heating increases with degree of stretching. Shrinkage is known to be related to disorientation of non-crystalline regions whereof the conclusion from this study is that the increased tensile properties are due to orientation of the non-crystalline regions of the fibre.