2021
DOI: 10.26434/chemrxiv.14371967.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Structure-Based De Novo Molecular Generator Combined with Artificial Intelligence and Docking Simulations

Abstract: Recently, molecular generation models based on deep learning have attracted significant attention in drug discovery. However, most existing molecular generation models have a serious limitation in the context of drug design wherein they do not sufficiently consider the effect of the three-dimensional (3D) structure of the target protein in the generation process. In this study, we developed a new deep learning-based molecular generator, SBMolGen, that integrates a recurrent neural network, a Monte Carlo tree s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 3 publications
0
1
0
Order By: Relevance
“…More recently, molecular docking has been incorporated into RL generative model paradigms, offering a proposed solution that integrates structural information, steering molecular design by rewarding compounds that exhibit good docking scores and circumventing some limitations of QSAR models. [18][19][20][21] However, it is often challenging to ascertain what exactly constitutes a 'good' docking score. Docking algorithms are inherently sensitive to the three-dimensional (3D) representation of the protein and ligands [22,23].…”
Section: Introductionmentioning
confidence: 99%
“…More recently, molecular docking has been incorporated into RL generative model paradigms, offering a proposed solution that integrates structural information, steering molecular design by rewarding compounds that exhibit good docking scores and circumventing some limitations of QSAR models. [18][19][20][21] However, it is often challenging to ascertain what exactly constitutes a 'good' docking score. Docking algorithms are inherently sensitive to the three-dimensional (3D) representation of the protein and ligands [22,23].…”
Section: Introductionmentioning
confidence: 99%