We report a detailed investigation of the vibrational modes, structure, and dynamics of glutathione (GSH) solutions using ultrasonic relaxation spectroscopy, FT-IR vibrational spectroscopy, and electronic absorption measurements. The experimental data were analyzed using density functional theory (DFT) and molecular docking calculations. Three distinct Debye-type relaxation processes can be observed in the acoustic spectra, which are assigned to conformational changes between GSH conformers, the self-association of GSH, and protonation processes. The standard volume changes for each process were estimated both experimentally and theoretically, revealing a close resemblance among them. The higher the effect of the relaxation process in the structure, the greater the induced volume changes. From the temperature dependence of specific acoustic parameters, the thermodynamic characteristics of each process were determined. The experimental FT-IR spectra were compared with the corresponding theoretically predicted vibrational spectra, revealing that the GSH dimers and extended conformers dominate the structure of GSH solutions in the high-concentration region. The absorption spectra in the ultraviolet region confirmed the gradual aggregation mechanism that takes place in the aqueous GSH solutions. The results of the present study were discussed and analyzed in the framework of the current phenomenological status of the field.