Repeat proteins are an abundant class in eukaryotic proteomes. They are involved in many eukaryotic specific functions, including signalling. For many of these families, the structure is not known. Recently, it has been shown that the structure of many protein families can be predicted by using contact predictions from direct coupling analysis and deep learning.However, their unique sequence features present in repeat proteins is a challenge for contact predictions DCA-methods. Here, we show that using the deep learning-based PconsC4 is more effective for predicting both intra and interunit contacts among a comprehensive set of repeat proteins. In a benchmark dataset of 819 repeat proteins about one third can be correctly modelled and among 51 PFAM families lacking a protein structure, we produce models of five families with estimated high accuracy.Structure Prediction of Repeats proteomes. Their primary sequence present repetition in the amino acid sequences that origin structures with repeated folds/domains. Although the repeated units are easy to be recognized in primary sequence, often structure information are missing. Here we used contact prediction for predicting the structure of repeats protein directly from their primary sequences. We benchmark our method on a dataset comprehensive of all the known repeated structures. We evaluate the contact predictions and the obtained models set for different classes of proteins and different lengths of the target, and we benchmark the quality assessment of the models on repeats proteins. Finally, we applied the methods on the repeat PFAM families missing of resolved structures, five of them modelled with high accuracy.A classification of repeat proteins was proposed by Kajava [12,13] based on the length of the repeat units and the tertiary structure of the repeat units. According to Kajava's classification, there are five classes of repeat proteins. However, in this study, we ignore class I and II because there are no available structures for class I, and class II structures are folded in a coiled-coil structure easy to be predicted. Moreover, the extreme amino acid 2 4