2018
DOI: 10.1101/271593
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Structural basis of human 5,10-methylenetetrahydrofolate reductase (MTHFR) regulation by phosphorylation and S-adenosylmethionine inhibition

Abstract: The folate and methionine cycles are crucial to the biosynthesis of lipids, nucleotides and proteins, and production of the global methyl donor S-adenosylmethionine (SAM). 5,10-methylenetetrahydrofolate reductase (MTHFR) represents a key regulatory connection between these cycles, generating 5-methyltetrahydrofolate for initiation of the methionine cycle, and undergoing allosteric inhibition by its end product SAM. Our 2.5 Å resolution crystal structure of human MTHFR reveals a unique architecture, appending t… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 53 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?