2023
DOI: 10.1039/d3ya00243h
|View full text |Cite
|
Sign up to set email alerts
|

Structural and kinetic adjustments of Zr-based high-entropy alloys with Laves phases by substitution of Mg element

Abstract: Exploring of high-entropy alloys for hydrogen storage recently have attracted attentions due to their having large number of defects, high-entropy induced thermodynamic disability and abundant raw metal elements. In this...

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 39 publications
0
1
0
Order By: Relevance
“…Notably, storing gaseous hydrogen at high pressure (350~700 bar) in storage tanks and transporting it via tube trailers is a prominent approach, as is liquefying gaseous hydrogen (−253 ℃) and storing it in dedicated storage tanks. These methods require specialized infrastructure due to the high energy density of hydrogen, and liquefaction, in particular, incurs significant energy consumption [46][47][48][49][50][51][52][53][54][55][56][57][58][59]. As alternatives, research is underway on physically adsorbing hydrogen onto porous materials such as Metal Organic Frameworks (MOFs) and Carbon nanotubes for storage and transportation, as well as chemically binding hydrogen to metals to enable solid-state storage and desorption, as seen in metal hydrides.…”
Section: Introductionmentioning
confidence: 99%
“…Notably, storing gaseous hydrogen at high pressure (350~700 bar) in storage tanks and transporting it via tube trailers is a prominent approach, as is liquefying gaseous hydrogen (−253 ℃) and storing it in dedicated storage tanks. These methods require specialized infrastructure due to the high energy density of hydrogen, and liquefaction, in particular, incurs significant energy consumption [46][47][48][49][50][51][52][53][54][55][56][57][58][59]. As alternatives, research is underway on physically adsorbing hydrogen onto porous materials such as Metal Organic Frameworks (MOFs) and Carbon nanotubes for storage and transportation, as well as chemically binding hydrogen to metals to enable solid-state storage and desorption, as seen in metal hydrides.…”
Section: Introductionmentioning
confidence: 99%