2020
DOI: 10.1016/j.jhydrol.2019.124296
|Get access via publisher |Cite
|
Sign up to set email alerts

Streamflow and rainfall forecasting by two long short-term memory-based models

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

2
80
0
2

Year Published

2020
2020
2025
2025

Publication Types

Select...
6
1
1

Relationship

2
6

Authors

Journals

citations
Cited by 302 publications
(84 citation statements)
references
References 48 publications
2
80
0
2
Order By: Relevance
“…However, these studies have not emphasized the inclusion of physical watershed characteristics in the models. Recent studies (Chu et al, 2020;Kratzert et al, 2018;Ni et al, 2020; have applied deep learning models to multiple watersheds while using a separate model for each watershed or gauge. While developing one model for each watershed improves accuracy of prediction, it is inefficient and difficult to apply on a larger scale.…”
Section: Introductionmentioning
confidence: 99%
“…However, these studies have not emphasized the inclusion of physical watershed characteristics in the models. Recent studies (Chu et al, 2020;Kratzert et al, 2018;Ni et al, 2020; have applied deep learning models to multiple watersheds while using a separate model for each watershed or gauge. While developing one model for each watershed improves accuracy of prediction, it is inefficient and difficult to apply on a larger scale.…”
Section: Introductionmentioning
confidence: 99%
“…), the ability of mentioned models (i.e., ANN, SARIMA, and ES) to forecast highly nonstationary and seasonal hydrological time series (e.g., streamflow) may be restricted due to the multifrequency nature of the real hydrological process. To handle the mentioned nonstationary problem, the application of wavelet-based data preprocessing has been already proposed and used successfully in hydro-environmental modeling [26][27][28][29]. For example, Jamei et al [27] developed waveletmultigene genetic programming for the simulation of surface water total dissolved solids.…”
Section: Introductionmentioning
confidence: 99%
“…Ahmadianfar et al [26] developed the locally weighted linear regression with the wavelet transform (WT) for the prediction of electrical conductivity in surface water. Ni et al [29] used a hybrid wavelet and long short-term memory (LSTM) network for monthly streamflow and rainfall forecasting and indicated the superiority of the hybrid model against conventional LSTM.…”
Section: Introductionmentioning
confidence: 99%
“…Son yıllarda, beynin yapısından ve işlevinden ilham alan yapay sinir ağları tabanlı algoritmalarla ilgili bir makine öğrenmesinin alt alanı olan Derin öğrenme yaklaşımı tahmin çalışmalarında kullanılmaktadır. [16][17][18]. Derin öğrenme, çok katmanlı modellerle yapılan yapay öğrenme olup, Yapay Sinir Ağlarındaki gizli katmanın sayısının artırılmış ve geliştirilmiş halidir.…”
Section: Introductionunclassified
“…LSTM mimarisinin RNN mimarisine göre en temel avantajları; sıfırlanan gradyan problemine çözüm oluşturabilmesi ve girdilerin unutulmadan saklanabilmesi aracılığıyla bilgi kaybını engelleyebilmesidir. Bu nedenle LSTM mimarisi yaygın olarak kullanılmaya başlanmıştır [20].…”
Section: Introductionunclassified