Artemisinin combination therapies (ACTs) have been used as the first-line treatments against Plasmodium falciparum malaria for decades. Recent advances in chemical proteomics have shed light on the complex mechanism of action of semi-synthetic artemisinin (ARTs), particularly their promiscuous alkylation of parasite proteins via previous heme-mediated bioactivation of the endoperoxide bond. Alarmingly, the rise of resistance to ART in South East Asia and the synthetic limitations of the ART scaffold have pushed the course for the necessity of fully synthetic endoperoxide-based antimalarials. Several classes of synthetic endoperoxide antimalarials have been described in literature utilizing various endoperoxide warheads including 1,2-dioxanes, 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes. Two of these classes, the 1,2,4-