2020
DOI: 10.1002/ange.201907670
|View full text |Cite
|
Sign up to set email alerts
|

Stimuliresponsive, auf Biomolekülen basierende Hydrogele und ihre Anwendungen

Abstract: Dieser Aufsatz präsentiert Poly‐ und Oligosaccharide, Nucleinsäuren, Peptide und Proteine als funktionelle stimuliresponsive Polymergerüste, die zu Hydrogelen mit gesteuerter Steifigkeit führen. Verschiedene physikalische oder chemische Auslöser werden genutzt, um die Vernetzungseinheiten strukturell zu rekonfigurieren und die Steifigkeit der Hydrogele zu steuern. Durch die Einbindung stimuliresponsiver supramolekularer Komplexe und stimuliresponsiver biomolekularer Einheiten als Vernetzungselemente werden Hyb… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 20 publications
(1 citation statement)
references
References 439 publications
0
1
0
Order By: Relevance
“…30,31 Besides the crosslinking of polymer chains by means of duplex nucleic acid bridges, 32 hydrogels cooperatively stabilized by duplex nucleic acids and stimulus-responsive nucleic acid crosslinking units exhibit signal-triggered stiffness functions. 33,34 For example, cytosinerich strands undergo reversible pH-triggered reconguration between random strands and i-motif structures. 35 Guanosinerich nucleic acids undergo, in the presence of K + -ions/crown ethers, reversible transitions between G-quadruplex and random strand congurations, 36 nucleic acid strands functionalized with photoisomerizable azobenzene units demonstrate light-induced formation and dissociation of duplex nucleic acids upon photoisomerization of the azobenzene units between trans and cis states, 27,37,38 and triplex T-A$T or C-G$C + nucleic acids undergo pH-stimulated reconguration of the nanostructures.…”
Section: Introductionmentioning
confidence: 99%
“…30,31 Besides the crosslinking of polymer chains by means of duplex nucleic acid bridges, 32 hydrogels cooperatively stabilized by duplex nucleic acids and stimulus-responsive nucleic acid crosslinking units exhibit signal-triggered stiffness functions. 33,34 For example, cytosinerich strands undergo reversible pH-triggered reconguration between random strands and i-motif structures. 35 Guanosinerich nucleic acids undergo, in the presence of K + -ions/crown ethers, reversible transitions between G-quadruplex and random strand congurations, 36 nucleic acid strands functionalized with photoisomerizable azobenzene units demonstrate light-induced formation and dissociation of duplex nucleic acids upon photoisomerization of the azobenzene units between trans and cis states, 27,37,38 and triplex T-A$T or C-G$C + nucleic acids undergo pH-stimulated reconguration of the nanostructures.…”
Section: Introductionmentioning
confidence: 99%