Bile salts are amphiphilic steroids with a C5 carboxylic side chain with digestive functions in vertebrates. Upon excretion, they are degraded by environmental bacteria. Degradation of the bile-salt steroid skeleton resembles the well-studied pathway for other steroids like testosterone, while specific differences occur during side-chain degradation and the initiating transformations of the steroid skeleton. Of the latter, two variants via either Δ1,4- or Δ4,6-3-ketostructures of the steroid skeleton exist for 7-hydroxy bile salts. While the Δ1,4- variant is well-known from many model organisms, the Δ4,6-variant involving a 7-hydroxysteroid dehydratase as key enzyme has not been systematically studied. Here, combined proteomic, bioinformatic and functional analyses of the Δ4,6-variant in Sphingobium sp. strain Chol11 were performed. They revealed a degradation of the steroid rings similar to the Δ1,4-variant except for the elimination of the 7-OH as key difference. In contrast, differential production of the respective proteins revealed a putative gene cluster for side-chain degradation encoding a CoA-ligase, an acyl-CoA dehydrogenase, a Rieske monooxygenase, and an amidase, but lacking most canonical genes known from other steroid-degrading bacteria. Bioinformatic analyses predicted the Δ4,6-variant to be widespread among the Sphingomonadaceae, which was verified for three type strains which also have the predicted side-chain degradation cluster. A second amidase in the side-chain degradation gene cluster of strain Chol11 was shown to cleave conjugated bile salts while having low similarity to known bile-salt hydrolases. This study signifies members of the Sphingomonadaceae remarkably well-adapted to the utilization of bile salts via a partially distinct metabolic pathway.