2019
DOI: 10.1002/ange.201909904
|View full text |Cite
|
Sign up to set email alerts
|

Steigerung der Wasseroxidation durch In‐situ‐Elektrokonversion eines Mangangallids: Ein intermetallischer Vorläuferansatz

Abstract: Erstmals wurden, in einen intermetallischen Vorläuferansatz, durch In‐situ‐Elektrokonversion von Mangangallid (MnGa4) hochleistungsfähige und langzeitstabile MnOx‐basierte Elektrokatalysatoren für die Wasseroxidation in alkalischem Medium hergestellt. Überraschend führt seine Elektrokorrosion, unter gleichzeitigem Verlust von Ga, gleichzeitig zu drei kristallinen Typen von MnOx‐Mineralien mit verschiedenen Strukturen und induzierten Defekten: Birnessit δ‐MnO2, Feitknechtit β‐MnOOH und Hausmannit α‐Mn3O4. Das V… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
7

Relationship

3
4

Authors

Journals

citations
Cited by 16 publications
(5 citation statements)
references
References 62 publications
0
4
0
Order By: Relevance
“…Thus, the low residue Cl − content will not affect the evaluation of the OER activity. The electrochemical surface areas (ECSA) are described by the surface capacitances of NH 4 MnPO 4 ⋅ H 2 O and KMnPO 4 ⋅ H 2 O with values of 7.14 and 7.45 μ F, respectively (Figure S4) [14] . In addition, the Brunner‐Emmett‐Teller (BET) surface areas of NH 4 MnPO 4 ⋅ H 2 O and KMnPO 4 ⋅ H 2 O are measured to be 4.79 and 6.41 m 2 g −1 , respectively (Figure S5).…”
Section: Resultsmentioning
confidence: 99%
“…Thus, the low residue Cl − content will not affect the evaluation of the OER activity. The electrochemical surface areas (ECSA) are described by the surface capacitances of NH 4 MnPO 4 ⋅ H 2 O and KMnPO 4 ⋅ H 2 O with values of 7.14 and 7.45 μ F, respectively (Figure S4) [14] . In addition, the Brunner‐Emmett‐Teller (BET) surface areas of NH 4 MnPO 4 ⋅ H 2 O and KMnPO 4 ⋅ H 2 O are measured to be 4.79 and 6.41 m 2 g −1 , respectively (Figure S5).…”
Section: Resultsmentioning
confidence: 99%
“…Most metals have a certain solubility in Ga, thus Ga can be used as a metallic solvent to synthesize Ga‐based alloys. [ 19–21 ] In the oxygen‐containing environment, a protective Ga 2 O 3 layer will automatically form on the Ga surface, [ 22,23 ] and cannot be reduced by conventional reducing gases such as hydrogen unless under extreme conditions. [ 24 ] Due to the strong interaction between Ga 2 O 3 and Ga, the surface lateral diffusion rate of solute atoms is limited, [ 25 ] which hampers the layer‐by‐layer 2D growth mode of Ga‐based alloy.…”
Section: Resultsmentioning
confidence: 99%
“…However, the detailed TMBs surface reconstruction during the OER process is still ill‐characterized. Effective methodologies that could be applied to this problem are isotopic labeling and in situ techniques …”
Section: Discussionmentioning
confidence: 99%