2023
DOI: 10.3390/biomimetics8030320
|View full text |Cite
|
Sign up to set email alerts
|

STDP-Driven Rewiring in Spiking Neural Networks under Stimulus-Induced and Spontaneous Activity

Abstract: Mathematical and computer simulation of learning in living neural networks have typically focused on changes in the efficiency of synaptic connections represented by synaptic weights in the models. Synaptic plasticity is believed to be the cellular basis for learning and memory. In spiking neural networks composed of dynamical spiking units, a biologically relevant learning rule is based on the so-called spike-timing-dependent plasticity or STDP. However, experimental data suggest that synaptic plasticity is o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 52 publications
0
0
0
Order By: Relevance