2016
DOI: 10.1117/1.jbo.21.7.075010
|View full text |Cite
|
Sign up to set email alerts
|

Statistical strategies to reveal potential vibrational markers forin vivoanalysis by confocal Raman spectroscopy

Abstract: The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate classes of samples and to propose new vibrational markers for explaining various phenomena like disease monitoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely discussed in applied sciences. In this context, this work presents a detailed dis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2020
2020

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 46 publications
0
1
0
Order By: Relevance
“…A wide variety of techniques have been investigated including wavelets [26], FFTs [27], first and second derivatives [28], and polynomial fitting [29]. At present the most commonly implemented baseline correction techniques involve some form of polynomial fitting [30]. An easily implemented method uses an asymmetrically reweighted penalized least squares smoothing algorithm (arPLS) developed by Baek et al [31].…”
Section: Data Pre-processingmentioning
confidence: 99%
“…A wide variety of techniques have been investigated including wavelets [26], FFTs [27], first and second derivatives [28], and polynomial fitting [29]. At present the most commonly implemented baseline correction techniques involve some form of polynomial fitting [30]. An easily implemented method uses an asymmetrically reweighted penalized least squares smoothing algorithm (arPLS) developed by Baek et al [31].…”
Section: Data Pre-processingmentioning
confidence: 99%