Stacked neural network for predicting polygenic risk score
Sun bin Kim,
Joon Ho Kang,
MyeongJae Cheon
et al.
Abstract:In recent years, the utility of polygenic risk scores (PRS) in forecasting disease susceptibility from genome-wide association studies (GWAS) results has been widely recognised. Yet, these models face limitations due to overfitting and the potential overestimation of effect sizes in correlated variants. To surmount these obstacles, we devised the Stacked Neural Network Polygenic Risk Score (SNPRS). This novel approach synthesises outputs from multiple neural network models, each calibrated using genetic varian… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.