2015
DOI: 10.1016/j.electacta.2015.04.168
|View full text |Cite
|
Sign up to set email alerts
|

Stabilizing effect of 2-(triphenylphosphoranylidene) succinic anhydride as electrolyte additive on the lithium metal of lithium metal secondary batteries

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
19
0
1

Year Published

2016
2016
2021
2021

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 41 publications
(20 citation statements)
references
References 43 publications
(53 reference statements)
0
19
0
1
Order By: Relevance
“…Efforts to develop LMBs before the 1980s proved fruitless mainly because of the safety issues induced by the growth of Li dendrites during repeated charge/discharge cycles [8][9][10][11].…”
Section: Introductionmentioning
confidence: 99%
“…Efforts to develop LMBs before the 1980s proved fruitless mainly because of the safety issues induced by the growth of Li dendrites during repeated charge/discharge cycles [8][9][10][11].…”
Section: Introductionmentioning
confidence: 99%
“…Another representative method of stable SEI realization is the introduction of a functional electrolyte, which is both efficient and economical. [ 57,58,150–155 ] The functional electrolyte and small amounts of additives can easily form a uniform and robust SEI on the Li metal surface to prevent electrolyte decomposition and suppress Li dendrite formation during repeated charge/discharge. Jin et al fabricated a patterned Li metal electrode with a vinylene carbonate (VC) additive, [ 156 ] which secured high charge/discharge efficiency by promoting the formation of a dense SEI.…”
Section: Use Of LI Metal Powder and Micropatterning To Increase Surfamentioning
confidence: 99%
“…Considering both high current density and areal capacity for the design of high‐energy‐density secondary batteries, one arrives at the conclusion that Li metal cannot be used as a thin foil itself. Therefore, numerous methods for alleviating Li dendrite growth have been proposed, as exemplified i) by the use of functional electrolytes, [ 29,55–58 ] ii) by using polymer electrolytes, [ 59–64 ] iii) modified separator, [ 60,65–70 ] and iv) protective layers. [ 27,71–76 ] However, attempts to modify or improve the performance of Li metal itself have been limited.…”
Section: Introductionmentioning
confidence: 99%
“…1 The working mechanism of lithium-ion battery [16] 图 2 Li + 溶剂化合物从电解液迁移到石墨层间的过程及相 应的阻抗图 [43] Fig. 2 Schematic description of a solvated lithium ion's journey from solution bulk to grapheneinterior, and the impedance components associated with these steps [43] (a (2)抑制金属离子溶出 由于 LiPF 6 基电解液极易与水反应生成 HF, 侵 蚀电池正极材料, 导致金属离子溶出 [46][47] , 并在石 墨表面沉积, 对负极表面膜的形成与生长起到催化 作用, 不仅会消耗大量 Li + , 还会造成电池阻抗急剧 增加。以上问题均导致电池容量严重衰减。 宋海申等 [48] 分别以 [50][51] 。由于突出的 能量密度优势, 包括 Li-S、Li-O 2 在内的锂金属电池 近年来受到研究人员的广泛关注 [52] 。但锂金属电池 也存在一系列问题, 如库伦效率低、易形成锂枝晶 等, 影响循环性能和安全性能 [53][54] 。 无 机 材 料 学 报 第 33 卷 图 3 石墨/Li 半电池在不同倍率下的放电比容量 [49] Fig. 3 Rate capabilities of graphite/Li half cells at various discharge rates [49] Miao 等 [55][57] 报道达到饱和浓 度的 LiAsF 6 /EC 基电解液, 可抑制溶剂分子嵌入层 状 ZrS 2 电极。2003 年 Jeong 等 [58] 发现高浓度 PC 基 电解液中, Li + 在石墨负极能进行可逆脱出/嵌入反 应。Jeong 等 [59] 又在 2008 年报道 PC 基高浓度电解 液能有效抑制 Li 金属电极上锂枝晶生成。Suo 等 [60] 和 Qian 等 [61] 分别在 2013 年和 2015 年报道了高浓 度电解液能使锂金属电池具备良好的可逆性能, 有 效抑制 Li-S 电池中锂多硫化合物溶解。Matsumoto 等 [62] 则在 2013 年报道了高浓度锂盐电解液能够抑 制 Al 集流体腐蚀。 对于高浓度电解液主体性质的研究表明, 一些 锂盐和溶剂的高浓度混合物已不是简单的"溶液", 它 具 备 类 似 于 离 子 液 体 的 特 殊 性 质 。 2001 年 , Liang [63] 等利用 LiTFSI 和尿素配制成高浓度电解质, 虽然是由两种固体组成, 但其在常温下以液态存在, 认为是两物质间的强相互作用减弱了 LiTFSI 阴阳 离 子 间 的 结 合 力 , 形 成 了 一 种 低 共 熔 盐 。 同 时 , Henderson 等 [64] 使用 LiTFSI 作为锂盐, 四乙二醇二 甲醚为溶剂, 该高浓度电解质在常温下以离子液体 形式存在电化学窗口可达到 4.5 V 以上(vs. Li + /Li)。 2010 年开始, Watanabe 等 [65][66][67] 的一系列文章报道了 高浓度电解液许多类似于离子液体的物理化学性质, 并将其定义为一种新型的离子液体溶剂化物。 图 4 LiTFSI 和 LiBOB 在多盐体系电解液中的作用 [56] Fig.…”
Section: Lidtiunclassified