2014
DOI: 10.1016/j.coph.2014.10.001
|View full text |Cite
|
Sign up to set email alerts
|

Spherical and tubule nanocarriers for sustained drug release

Abstract: We discuss new trends in Layer-by-Layer (LbL) encapsulation of spherical and tubular cores of 50–150 nm diameter and loaded with drugs. This core size decrease (from few micrometers to a hundred of nanometers) for LbL encapsulation required development of sonication assistant non-washing technique and shell PEGylation to reach high colloidal stability of drug nanocarriers at 2–3 mg/mL concentration in isotonic buffers and serum. For 120–170 nm spherical LbL nanocapsules of low soluble anticancer drugs, polyele… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
43
0
1

Year Published

2016
2016
2020
2020

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 73 publications
(44 citation statements)
references
References 55 publications
(78 reference statements)
0
43
0
1
Order By: Relevance
“…The current study is the first to engage with the efficacy of novel nanomaterials loaded concomitantly with zinc and copper pyrithiones and tested on marine macrofoulers from several geographical regions. The antifouling nanocarrier technology provides controlled release of the active compounds, enabling the target foulers to be effectively addressed, along with a relatively low release of the compounds into the ambient waters [45]. Mussels have been successfully used as a model system to test the antifouling activity of biocidal compounds by determining both their continued attachment by byssus threads and their mortality [26,27,46].…”
Section: Model Systems In Geographic Perspectivementioning
confidence: 99%
“…The current study is the first to engage with the efficacy of novel nanomaterials loaded concomitantly with zinc and copper pyrithiones and tested on marine macrofoulers from several geographical regions. The antifouling nanocarrier technology provides controlled release of the active compounds, enabling the target foulers to be effectively addressed, along with a relatively low release of the compounds into the ambient waters [45]. Mussels have been successfully used as a model system to test the antifouling activity of biocidal compounds by determining both their continued attachment by byssus threads and their mortality [26,27,46].…”
Section: Model Systems In Geographic Perspectivementioning
confidence: 99%
“…10-30 nm and 40-70 nm, respectively . Halloysite possesses a positive alumina inner lumen and a negative silica outer surface allowing its selective functionalization (Arcudi et al, 2014;Cavallaro, Lazzara, & Milioto, 2012), the formation of a liquid crystalline phase (Luo et al, 2013) and the encapsulation of chemically and biologically active compounds Lvov, Shchukin, Möhwald, & Price, 2008;Lvov, Wang, Zhang, & Fakhrullin, 2016;Lvov, DeVilliers, & Fakhrullin, 2016;Shutava, Fakhrullin, & Lvov, 2014;), such as drugs (Aguzzi, Cerezo, Viseras, & Caramella, 2007;Lun, Ouyang, & Yang, 2014), natural molecules (Massaro, Piana et al, 2015), marine biocides (Wei et al, 2014), cosmetics (Suh et al, 2011), and other functional agents (Abdullayev, Price, Shchukin, & Lvov, 2009). HNT are suitable as catalytic supports (Machado, de Freitas Castro, Wypych, & Nakagaki, 2008;Massaro et al, 2014;, adsorbent nanomaterials for wastewater decontamination (Szczepanik & Słomkiewicz, 2016;Zhang et al, 2016), and nanofiller for sustainable packaging (Liu, Wu, Jiao, Xiong, & Zhou, 2013;Tescione, Buonocore, Stanzione, Oliviero, & Lavorgna, 2014).…”
Section: Introductionmentioning
confidence: 99%
“…HNTs Anti-câncer [23] Ibuprofeno [24] Resveratrol [25] Tetraciclina [26] Benzitriazol [27] Dexametasona [28] Mesalazina [29] Dexametasona, Furosemida e Nefedipina [30] Dialtizem [31] Haloisita modificada com 3-aminopropiltrietoxissilano Ibuprofeno [32] Adesivo modificado de HNTs para uso odontológico Doxiciclina [33] HNTs modificado com sal de triazol Curcumina [34] Compósito de HNTs e materiais biocompatíveis (hialuronato de sódio com polimetacrilato de hidroxietil) para formação de hidrogel 5-fluoracila (5-FU) [35] HNTs modificado com antisurvivina tRNA Fármacos de atividade antitumoral [36] HNTs em microesferas porosas Dopamina; Lacase [37] HNTs modificado com 3-aminopropiltrietoxsilano Aspirina [38] HNTs modificado com ciclodextrinas (unidas aos nanotubos) Curcumina [34] HNTs com ativação básica da estrutura Ofloxacino [39] Compósito de HNTs e poli-ácido lático-co-glicólico (PLGA) Tetraciclina [40,41,42] Nanocompósitos HNTs, grânulos de alginato de sódio e hidroxiapatita para formação de hidrogel Diclofenaco de sódio [43] Microesferas de quitosana, Fe 3 O 4 e HNTs Ofloxacino [44] DNA-envolto em HNTs Doxirrubicina [45] HNTs enxertado com ácido fólico e magnetita Doxirrubicina [46] Compósito de HNTs com polimetilmetacrilato (PMMA) formando cimento ósseo para a substituição de quadril e joelho Sulfato de gentamicina [47] Compósito de HNTs com álcool polivinílico, montmorilonita, metacrilato de polimetila formando filmes Tetraciclina [48] Pellets com HNTs e celulose microcristalina Fentanil [49] Fonte: Arquivos do autor, 2015.…”
Section: Forma Utilizada Fármaco Referênciaunclassified