Deregulation of signaling by the epidermal growth factor receptor (EGFR) is common in human malignancy progression. One mutant EGFR (variously named ⌬EGFR, de2-7 EGFR, or EGFRvIII), which occurs frequently in human cancers, lacks a portion of the extracellular ligand-binding domain due to genomic deletions that eliminate exons 2 to 7 and confers a dramatic enhancement of brain tumor cell tumorigenicity in vivo. In order to dissect the molecular mechanisms of this activity, we analyzed location, autophosphorylation, and attenuation of the mutant receptors. The mutant receptors were expressed on the cell surface and constitutively autophosphorylated at a significantly decreased level compared with wild-type EGFR activated by ligand treatment. Unlike wild-type EGFR, the constitutively active ⌬EGFR were not down-regulated, suggesting that the altered conformation of the mutant did not result in exposure of receptor sequence motifs required for endocytosis and lysosomal sorting. Mutational analysis showed that the enhanced tumorigenicity was dependent on intrinsic tyrosine kinase activity and was mediated through the carboxyl terminus. In contrast with wild-type receptor, mutation of any major tyrosine autophosphorylation site abolished these activities suggesting that the biological functions of ⌬EGFR are due to low constitutive activation with mitogenic effects amplified by failure to attenuate signaling by receptor down-regulation.
Ligand binding to wild-type epidermal growth factor receptor (wt EGFR)1 results in receptor dimerization, kinase activation, and autophosphorylation that provides both docking sites for proteins involved in signal transduction and exposure of endocytic and lysosomal targeting sequence codes required for receptor internalization and down-regulation (1). The biochemical and biological roles of each autophosphorylation site in wt EGFR have been explored by mutational analysis, and mutation of any single autophosphorylation site does not significantly abrogate binding of the activated receptor to specific SH2-containing proteins associated with distinct signaling pathways (2). Likewise, such single mutations are generally incapable of reducing the biological functions of the receptor in in vitro models (3, 4). Correspondingly, the mitogenic and transforming activities of wild-type receptor were diminished only when combinations of favorable autophosphorylation sites (i.e. Tyr-1068, Tyr-1148, and Tyr-1173) were mutated (3), suggesting that the autophosphorylation sites of wt EGFR may have less specificity for signaling proteins and can compensate for each other. Sites of tyrosine phosphorylation may be provided via heterodimerization with other members of the erb B family of receptors (5-7). Point mutations that inactivated the tyrosine kinase activity of wt EGFR eliminated occupancyinduced receptor internalization (8,9,40,41), whereas mutant receptors lacking multiple autophosphorylation sites also lacked the ability to undergo ligand-induced endocytosis, suggesting that kinase-regulated re...