2013
DOI: 10.1016/j.jallcom.2012.02.145
|View full text |Cite
|
Sign up to set email alerts
|

Spark plasma sintering of Cu–Al–Ni shape memory alloy

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
13
0
2

Year Published

2015
2015
2021
2021

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 32 publications
(16 citation statements)
references
References 15 publications
1
13
0
2
Order By: Relevance
“…They are embedded into the matrix, which seems to be mixture of Al and Cu oxides derived from the nanofraction of spark erosion powder. This result has been already reported elsewhere in details [4,6].…”
Section: Phase Content and Microstructure Of Sintered Samplessupporting
confidence: 90%
See 2 more Smart Citations
“…They are embedded into the matrix, which seems to be mixture of Al and Cu oxides derived from the nanofraction of spark erosion powder. This result has been already reported elsewhere in details [4,6].…”
Section: Phase Content and Microstructure Of Sintered Samplessupporting
confidence: 90%
“…These collections seem to be the result of feasible scenarios of the transformations between the different type of oxides and Cu-Al-Ni particles during the preliminary ageing followed by spark plasma sintering. To explain the transformation of CuO oxide into Cu 2 O oxide and large heat release, which has been observed at 900C during the heating of powder, the redox reactions between the CuO oxide and Al in as-prepared powder has been proposed in [4,6]. Current TEM investigation has shown that there are several scenarios of such transformations, which could be fulfilled during the heat treatments of powder.…”
Section: Binder Fraction Formation Mechanismmentioning
confidence: 99%
See 1 more Smart Citation
“…En ambos casos se obtuvieron nanopartículas después de largos tiempos de molienda y partiendo de elementos puros (Radev, 2010;Amini et al, 2013). Para conseguir piezas consolidadas de las aleaciones con memoria de forma se han utilizado diferentes téc-nicas de sinterizado, por ejemplo las aleaciones de Ni-Mn-Ga y Cu-Al-Ni fueron procesadas mediante Spark Plasma Sintering (SPS) (Tian et al, 2011;Tian et al, 2012;Portier et al, 2013). El principal objetivo fue conservar las propiedades de memoria de forma de los polvos fabricados a partir de la aleación fundida y conseguir una reducción en la porosidad y por consiguiente aumentar sus propiedades mecánicas.…”
Section: Introductionunclassified
“…。但是传统方法制备的铜基形 状记忆合金具有塑性性能差,可加工性差,易脆性 断裂,马氏体稳定化等一系列问题 [4][5] ,限制了铜基 记忆合金的应用与发展,晶粒粗大是这些问题的最 主要诱因。常见的细化晶粒的方法是加入一些晶粒 细化元素,如 B、Ti、V、Co、Zr、Mn [6][7] 等。此外, 还有采用等径角挤压、双辊铸轧、熔融纺丝等技术, 但是上述方法限制了制件的尺寸,制备的条料厚度 仅为 0.5 mm 左右 [8][9] 。作为 3D 打印家族重要的技 术之一,激光选区熔化技术(Selective laser melting, SLM)在成形的过程中由于激光的快热和快冷, 使得 合金在熔化后具有极大的冷却速度,冷却速度可以 达到 1×10 3 ~1×10 8 K/s,抑制了晶粒的生长,可以 得到细小的晶粒 [10][11] 。此外,激光选区熔化技术通 过将三维模型转变为二维切片,并逐层熔化粉末成 形,因此不受构件复杂程度的影响,具有制造柔性, 在制造复杂功能构件方面具有极大的优势,可以节 省许多机加工序,因此采用激光选区熔化技术制备 铜基形状记忆合金具有广泛的应用前景。 目前, 已经有一些学者对激光选区熔化成形形状 记忆合金做了相关的研究。 GARGARELLA 等 [12] 研究 了激光选区熔化技术制备 Cu-Al-Ni 基形状记忆合金 的可行性, 用该技术制备了致密度达 92%以上的圆柱 体,并研究了 SLM 制备铜基合金的微观组织,热稳 定性和机械性能。 GUSTMANN 等 [13] 利用激光选区熔 化技术在激光功率为 300 W,扫描速度为 700 mm/s [14] 。进一步地,该团队研究了重熔工 艺对 Cu-Al-Ni 基形状记忆合金的作用,发现重熔可 以提高块体的致密度, 改变显微组织形貌, 相变温度, 不经过热处理手段就能够改善合金的性能 [15]…”
unclassified