2021
DOI: 10.22190/fumi191220002a
|View full text |Cite
|
Sign up to set email alerts
|

Some Remarks on the Classical Prime Spectrum of Modules

Abstract: Let R be a commutative ring with identity and let M be an R-module. A proper submodule P of M is called a classical prime submodule if abm ∈ P, for a,b ∈ R, and m ∈ M, implies that am ∈ P or bm ∈ P. The classical prime spectrum of M, Cl.Spec(M), is defined to be the set of all classical prime submodules of M. We say M is classical primefule if M = 0, or the map ψ from Cl.Spec(M) to Spec(R/Ann(M)), defined by ψ(P) = (P : M)/Ann(M) for all P ∈ Cl.Spec(M), is surjective. In this paper, we study classical primeful m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?