The frequency, distribution and structure of P elements on the second and third chromosomes of Texas 1, a wild-type inbred strain of Drosophila melanogaster, were investigated by in situ hybridization. These autosomes were isolated individually and used as P-element donors to study the frequency and distribution of male recombination events generated on recipient chromosomes which were originally devoid of P sequences. The P-element array of chromosome 2 was shown to generate higher male recombination frequencies on chromosome 3 than vice versa, despite having fewer P factors and fewer P elements in general. This is likely to be due to the presence and distribution of specific P-deletion derivatives, which vary in their ability to repress P mobility. The male recombination generated on recipient chromosomes is associated with the insertion of donated P sequences, but only in a small minority of cases could a novel P-element site be detected at, or near, the recombination breakpoint. The majority of such breakpoints appear to be associated either with unsuccessful P insertion, or with the action of P transposase attracted by P elements newly inserted elsewhere on the recipient chromosome. Recent evidence also suggests that a small proportion of the breakpoints may be associated with the action of P transposase alone. Male recombination breakpoints appear to be distributed effectively at random along the recipient autosomes, and their frequency of occurrence was shown to correlate with the physical length of DNA available between markers, as revealed by the polytene map distance.