2023
DOI: 10.1063/5.0161067
|View full text |Cite
|
Sign up to set email alerts
|

Solving quantum billiard eigenvalue problems with physics-informed machine learning

Abstract: A particle confined to an impassable box is a paradigmatic and exactly solvable one-dimensional quantum system modeled by an infinite square well potential. Here, we explore some of its infinitely many generalizations to two dimensions, including particles confined to rectangle-, ellipse-, triangle-, and cardioid-shaped boxes using physics-informed neural networks. In particular, we generalize an unsupervised learning algorithm to find the particles’ eigenvalues and eigenfunctions, even in cases where the eige… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 18 publications
0
0
0
Order By: Relevance