The vertical particle velocity profiles in a full-column cylindrical conical spouted bed, with or without a draft tube, are measured using a fibre optic probe system. The profiles have different characteristics for a draft tube spouted bed (DTSB) than for a conventional spouted bed (CSB). The spout of a CSB consists of a central flow where particle velocities fit exponential distributions, and a boundary layer where particle velocities are nearly uniform. The spout of a DTSB has no boundary layer and its radial particle velocity profiles are approximately linear. The particle velocities in the spout of a DTSB increase when superficial gas velocity increases, draft tube diameter decreases, or when entrainment height decreases. A kinematic model has been used to simulate the granular flow in the annulus of a CSB and DTSB, and they are compared with the experiments. The particle velocities in the annulus of a DTSB are much lower than that of a CSB. Their radial profiles are also different with a CSB. The dependence of particle velocities in the annulus of a DTSB on superficial gas velocity, draft tube diameter, and entrainment height are also discussed. One concludes that the draft tube diameter and entrainment height are two key factors for the solid circulation rate of a DTSB.