2017
DOI: 10.1007/s11207-017-1216-y
|View full text |Cite|
|
Sign up to set email alerts
|

Solar Radius at Subterahertz Frequencies and Its Relation to Solar Activity

Abstract: The Sun emits radiation at several wavelengths of the electromagnetic spectrum. In the optical band, the solar radius is 695,700 km and this is what defines the photosphere, the visible surface of the Sun. However, as the altitude increases, the electromagnetic radiation is produced at other frequencies, causing the solar radius to change as function of wavelength. These measurements enable a better understanding of the solar atmosphere and the radius dependence on the solar cycle is a good indicator of the ch… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

5
14
0

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
2

Relationship

3
4

Authors

Journals

citations
Cited by 16 publications
(20 citation statements)
references
References 21 publications
5
14
0
Order By: Relevance
“…Wavelength Frequency Radius Altitude (arcsec) (10 6 m) Fürst et al (1979) 1 dm 3 GHz 1070 ± 17 80 ± 12 Fürst et al (1979) 6 cm 5 GHz 1020 ± 9 44 ± 7 Bachurin (1983) 3.3 cm 9 GHz 989 ± 2 21 ± 1 Fürst et al (1979) 2.7 cm 11 GHz 991 ± 5 23 ± 4 Bachurin (1983) 2.3 cm 13 GHz 989 ± 2 21 ± 1 Wrixon (1970) 1.9 cm 16 GHz 990 ± 4 22 ± 3 Selhorst et al (2004) 1.8 cm 17 GHz 976.6 ± 1.5 12.3 ± 1.1 Costa et al (1986) 1.4 cm 22 GHz 981.7 ± 0.8 16.0 ± 0.6 Fürst et al (1979) 1.2 cm 25 GHz 979 ± 4 14 ± 3 Wrixon (1970) 1 cm 30 GHz 979 ± 4 14 ± 3 Pelyushenko & Chernyshev (1983) 8.6 mm 35 GHz 979 ± 3 14 ± 2 Selhorst et al (2019a) 8.1 mm 37 GHz 979 ± 5 14 ± 4 Costa et al (1986) 6.8 mm 44 GHz 978.1 ± 1.3 13.4 ± 0.9 Costa et al (1999) 6.2 mm 48 GHz 983.6 ± 1.9 17.4 ± 1.4 Pelyushenko & Chernyshev (1983) 6.2 mm 48 GHz 973.1 ± 2.9 9.8 ± 2.1 Coates (1958) 4.3 mm 70 GHz 969 ± 5 7 ± 4 Kislyakov et al (1975) 4 mm 74 GHz 967 ± 4 5 ± 3 Swanson (1973) 3.2 mm 94 GHz 972 ± 5 9 ± 4 Alissandrakis et al (2017) 3 mm 100 GHz 964.1 ± 4.5 3.2 ± 3.3 Labrum et al (1978) 3 mm 100 GHz 966 ± 1 5.0 ± 0.7 Selhorst et al (2019b) 3 mm 100 GHz 965.9 ± 3.2 4.5 ± 2.3 Wannier et al (1983) 2.6 mm 115 GHz 969.3 ± 1.6 7.0 ± 1.2 Menezes & Valio (2017) 1.4 mm 212 GHz 966.5 ± 2.8 5.0 ± 2.0 Alissandrakis et al (2017) 1.3 mm 230 GHz 961.1 ± 2.5 1.1 ± 1.8 Selhorst et al (2019b) 1.3 mm 230 GHz 961.6 ± 2.1 1.4 ± 1.5 Horne et al (1981) 1.3 mm 231 GHz 968.2 ± 1.0 6.2 ± 7.3 Menezes & Valio (2017) 0.7 mm 405 GHz 966.5 ± 2.7 5.0 ± 2.0…”
Section: Authorsmentioning
confidence: 98%
See 2 more Smart Citations
“…Wavelength Frequency Radius Altitude (arcsec) (10 6 m) Fürst et al (1979) 1 dm 3 GHz 1070 ± 17 80 ± 12 Fürst et al (1979) 6 cm 5 GHz 1020 ± 9 44 ± 7 Bachurin (1983) 3.3 cm 9 GHz 989 ± 2 21 ± 1 Fürst et al (1979) 2.7 cm 11 GHz 991 ± 5 23 ± 4 Bachurin (1983) 2.3 cm 13 GHz 989 ± 2 21 ± 1 Wrixon (1970) 1.9 cm 16 GHz 990 ± 4 22 ± 3 Selhorst et al (2004) 1.8 cm 17 GHz 976.6 ± 1.5 12.3 ± 1.1 Costa et al (1986) 1.4 cm 22 GHz 981.7 ± 0.8 16.0 ± 0.6 Fürst et al (1979) 1.2 cm 25 GHz 979 ± 4 14 ± 3 Wrixon (1970) 1 cm 30 GHz 979 ± 4 14 ± 3 Pelyushenko & Chernyshev (1983) 8.6 mm 35 GHz 979 ± 3 14 ± 2 Selhorst et al (2019a) 8.1 mm 37 GHz 979 ± 5 14 ± 4 Costa et al (1986) 6.8 mm 44 GHz 978.1 ± 1.3 13.4 ± 0.9 Costa et al (1999) 6.2 mm 48 GHz 983.6 ± 1.9 17.4 ± 1.4 Pelyushenko & Chernyshev (1983) 6.2 mm 48 GHz 973.1 ± 2.9 9.8 ± 2.1 Coates (1958) 4.3 mm 70 GHz 969 ± 5 7 ± 4 Kislyakov et al (1975) 4 mm 74 GHz 967 ± 4 5 ± 3 Swanson (1973) 3.2 mm 94 GHz 972 ± 5 9 ± 4 Alissandrakis et al (2017) 3 mm 100 GHz 964.1 ± 4.5 3.2 ± 3.3 Labrum et al (1978) 3 mm 100 GHz 966 ± 1 5.0 ± 0.7 Selhorst et al (2019b) 3 mm 100 GHz 965.9 ± 3.2 4.5 ± 2.3 Wannier et al (1983) 2.6 mm 115 GHz 969.3 ± 1.6 7.0 ± 1.2 Menezes & Valio (2017) 1.4 mm 212 GHz 966.5 ± 2.8 5.0 ± 2.0 Alissandrakis et al (2017) 1.3 mm 230 GHz 961.1 ± 2.5 1.1 ± 1.8 Selhorst et al (2019b) 1.3 mm 230 GHz 961.6 ± 2.1 1.4 ± 1.5 Horne et al (1981) 1.3 mm 231 GHz 968.2 ± 1.0 6.2 ± 7.3 Menezes & Valio (2017) 0.7 mm 405 GHz 966.5 ± 2.7 5.0 ± 2.0…”
Section: Authorsmentioning
confidence: 98%
“…The study of the radio solar radius provides important information about the solar atmosphere and activity cycle (Swanson 1973;Costa et al 1999;Menezes & Valio 2017;Selhorst et al 2019b). Using radio measurements of the solar radius derived from eclipse and direct observations one can probe the solar atmosphere, since these measurements show the height above the photosphere at which most of the emission at determined observation frequency is generated (Swanson 1973;Menezes & Valio 2017;Selhorst et al 2019b). However, as the observation frequency changes, the height changes as well (Selhorst et al 2004(Selhorst et al , 2019bMenezes & Valio 2017).…”
Section: Authorsmentioning
confidence: 99%
See 1 more Smart Citation
“…Therefore at a specific wavelength, the difference of ★ E-mail: menezes.astroph@gmail.com the measured radius from the optical radius can be understood as the height above the photosphere where most of the emission is being created in the limb regions. Moreover, the study of the solar radius at different wavelengths, derived from eclipse and direct observations, enables probing the solar atmosphere throughout the solar activity cycle (Swanson 1973;Costa et al 1999;Menezes & Valio 2017;Selhorst et al 2019b).…”
Section: Introductionmentioning
confidence: 99%
“…At radio wavelengths, the radius can be measured by the inflectionpoint method (Alissandrakis et al 2017;Menezes et al 2021), and by the half-power method (Costa et al 1999;Selhorst et al 2011;Menezes & Valio 2017). The measurement of the solar radius by any of theses two methods is considerably affected by the presence of limb brightening in the solar disk.…”
Section: Introductionmentioning
confidence: 99%