Low level laser treatment (LLLT) is known for its photobiostimulatory and photobiomodulatory characteristics, which stimulate cell proliferation, increase cellular metabolism, and improve cellular regeneration. The objective of the present research was to assess the possible influence of infrared diode laser irradiation on the behaviour, attachment, and osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) seeded on different types of dental implants. Two distinct types of implants, one subjected to laser surface treatment and the other treated with acid etching, were longitudinally divided into two halves and submerged in six wells culture plates. Both implants were subjected to infrared diode laser treatment, and subsequently, the morphology and attachment of cells were examined using scanning electron microscopy (SEM) after 14 and 21 days. The behaviour of (hPDLSCs) towards two types of implants, when exposed to osteogenic medium and low-level laser therapy (LLLT), was assessed using quantitative real-time polymerase chain reaction to measure the expression of stemness markers and osteogenic markers. The scanning electron microscopy (SEM) demonstrated that the application of infrared diode laser irradiation substantially improved the attachment of cells to both types of implants. The stemness gene markers were significantly down regulated in cells seeded on both surfaces when challenged with osteogenic media in relation to control. At 14 days, early osteogenic markers, were upregulated, while late osteogenic markers, were downregulated in both challenged groups. At the 21-day mark, hPDLSCs seeded on an acid-etched implant exhibited increased expression of all osteogenic markers in response to stimulation with osteogenic media and infra-red diode laser, in contrast to hPDLSCs seeded on a laser surface treated implant under the same conditions. Finally, the findings of our research revealed that when subjected to infrared diode laser, human periodontal ligament stem cells cultured on both types of implants demonstrated improved cellular attachment and differentiation. This suggested that infrared diode laser enhanced the activity of the cells surrounding the implants. Hence, the use of infrared diode laser could be pivotal in improving and expediting the clinical osseointegration process around dental implants.