1981
DOI: 10.1107/s056774088100318x
|View full text |Cite
|
Sign up to set email alerts
|

Sodium chromate(II) at 296 K (neutron)

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
12
0

Year Published

1983
1983
2018
2018

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 28 publications
(13 citation statements)
references
References 3 publications
1
12
0
Order By: Relevance
“…Sodium chromate, Na 2 CrO 4 is described at room temperature by phase II which is isomorphous with sodium sulfate ͑III͒. 3, 6 This phase is stable until 427°C, where a reversible transition into phase I occurs. 7 Other II→I transition temperatures from 413°C to 427°C have been reported.…”
Section: Introductionmentioning
confidence: 99%
“…Sodium chromate, Na 2 CrO 4 is described at room temperature by phase II which is isomorphous with sodium sulfate ͑III͒. 3, 6 This phase is stable until 427°C, where a reversible transition into phase I occurs. 7 Other II→I transition temperatures from 413°C to 427°C have been reported.…”
Section: Introductionmentioning
confidence: 99%
“…Therefore, possible candidates for the highpressure phases can be narrowed down to olivine (space group: Pnma), thenardite (Fddd), Na 2 CrO 4 (Cmcm), and Ag 2 CrO 4 (Pnma). Among them, the thenardite structure has a tetrahedral Zn site (Hawthorne and Ferguson, 1975), whereas the Na 2 CrO 4 and Ag 2 CrO 4 structures have both tetrahedral and octahedral Zn sites (Nimmo, 1981;Jacobson and Hackert, 1971). Therefore, thenardite is a less likely candidate as a high-pressure phase.…”
Section: Candidate Structures Of New High-pressure Phasesmentioning
confidence: 99%
“…A plot of reduced cell parameters for A 2 MnO 4 versus octahedral A + radii: 1, Na 2 MnO 4 (Kopelev et al, 1991); 2, Ag 2 MnO 4 (Ag 2 CrO 4 type; Chang & Jansen, 1983); 3, -K 2 SO 4 type for A = K, Rb, Cs (Kopelev et al, 1991;Palenik, 1967;Fischer & Hoppe, 1995). Plots of reduced cell parameters for A 2 BeF 4 (1-4) and A 2 CrO 4 (5-10) versus octahedral A + radii: 1 and 5, phenacite type for A = Li (Hartman, 1989;Brown & Faggiani, 1975); 2, olivine-type LiNaBeF 4 (Jahn, 1954) and Na 2 BeF 4 (Deganello, 1972); 3 and 7, glaserite-type NaKBeF 4 , NaTlBeF 4 and Na 1/2 Rb 3/2 BeF 4 (Pontonnier et al, 1972), Na 1.6 K 0.4 CrO 4 (PDF 26-1332, Goldberg et al, 1973), Na 3/2 K 1/2 CrO 4 (PDF 26-1467; Goldberg et al, 1973), NaKCrO 4 (PDF 26-1468; Goldberg et al, 1973), K 3/2 Na 1/2 CrO 4 (Madariaga & Breczewski, 1990); 4 and 9, -K 2 SO 4 type for A = K, Tl, Rb, Cs (McGinnety, 1972;da Silva et al, 2005a,b;Carter & Margulis, 1972;Aleksovska et al, 1998;ICSD 300021;Morris et al, 1981); 6, Na 2 CrO 4 (Nimmo, 1981); 8, Ag 2 CrO 4 (Hackert & Jacobson, 1971); 10, Tl 2 CrO 4 (Fá bry et al, 2010). solutions which enable extending the stability ranges of structures in terms of radii.…”
Section: Figurementioning
confidence: 99%
“…Another contradiction with the classical principles is the fact that conventional CNs (shown in Fig. 11 First and second coordination spheres of M atoms in A 2 MO 4 : (a) Li 2 SO 4 (Nord, 1976); (b) phenacite-type Li 2 BeF 4 (Collins et al, 1983); (c) olivine Mg 2 SiO 4 (Yamazaki & Toraya, 1999); (d) Na 2 MnO 4 (-K 2 SO 4 type; Kopelev et al, 1991); (e) and (f) Ge1 and Ge2 in Sr 2 GeO 4 (Nishi & Takeuchi, 1996); (g) glaserite K 3 Na(SO 4 ) 2 (Okada & Ossaka, 1980); (h) thenardite Na 2 SO 4 (Nord, 1973); (i) Na 2 CrO 4 (Nimmo, 1981); (j) Ag 2 CrO 4 (Hackert & Jacobson, 1971); (k) -K 2 SO 4 (McGinnety, 1972); (l) K 2 MoO 4 (Gatehouse & Leverett, 1969); (m) larnite -Ca 2 SiO 4 (Jost et al, 1977); (n) and (o) Cr1a and Cr1b in Tl 2 CrO 4 (Fá bry et al, 2010); (p) spinel-type Co 2 GeO 4 (Furuhashi et al, 1973).…”
Section: Correlations Between Packing Density Coordination Numbers Amentioning
confidence: 99%